python爬虫股票数据分析判断股票好坏_Python爬取股票信息,并可视化数据的示例...

本文主要是介绍python爬虫股票数据分析判断股票好坏_Python爬取股票信息,并可视化数据的示例...,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

截止2019年年底我国股票投资者数量为15975.24万户, 如此多的股民热衷于炒股,首先抛开炒股技术不说, 那么多股票数据是不是非常难找, 找到之后是不是看着密密麻麻的数据是不是头都大了?

今天带大家爬取雪球平台的股票数据, 并且实现数据可视化

先看下效果图

2020926142151698.gif?202082614226

基本环境配置

python 3.6

pycharm

requests

csv

time

目标地址

2020926142311314.jpg?2020826142331

爬虫代码

请求网页

import requests

url = 'https://xueqiu.com/service/v5/stock/screener/quote/list'

response = requests.get(url=url, params=params, headers=headers, cookies=cookies)

html_data = response.json()

解析数据

data_list = html_data['data']['list']

for i in data_list:

dit = {}

dit['股票代码'] = i['symbol']

dit['股票名字'] = i['name']

dit['当前价'] = i['current']

dit['涨跌额'] = i['chg']

dit['涨跌幅/%'] = i['percent']

dit['年初至今/%'] = i['current_year_percent']

dit['成交量'] = i['volume']

dit['成交额'] = i['amount']

dit['换手率/%'] = i['turnover_rate']

dit['市盈率TTM'] = i['pe_ttm']

dit['股息率/%'] = i['dividend_yield']

dit['市值'] = i['market_capital']

print(dit)

保存数据

import csv

f = open('股票数据.csv', mode='a', encoding='utf-8-sig', newline='')

csv_writer = csv.DictWriter(f, fieldnames=['股票代码', '股票名字', '当前价', '涨跌额', '涨跌幅/%', '年初至今/%', '成交量', '成交额', '换手率/%', '市盈率TTM', '股息率/%', '市值'])

csv_writer.writeheader()

csv_writer.writerow(dit)

f.close()

完整代码

import pprint

import requests

import time

import csv

f = open('股票数据.csv', mode='a', encoding='utf-8-sig', newline='')

csv_writer = csv.DictWriter(f, fieldnames=['股票代码', '股票名称', '当前价', '涨跌额', '涨跌幅/%', '年初至今/%', '成交量', '成交额', '换手率/%', '市盈率TTM', '股息率/%', '市值'])

csv_writer.writeheader()

for page in range(1, 53):

time.sleep(1)

url = 'https://xueqiu.com/service/v5/stock/screener/quote/list'

date = round(time.time()*1000)

params = {

'page': '{}'.format(page),

'size': '30',

'order': 'desc',

'order_by': 'amount',

'exchange': 'CN',

'market': 'CN',

'type': 'sha',

'_': '{}'.format(date),

}

cookies = {

'Cookie': 'acw_tc=2760824216007592794858354eb971860e97492387fac450a734dbb6e89afb; xq_a_token=636e3a77b735ce64db9da253b75cbf49b2518316; xqat=636e3a77b735ce64db9da253b75cbf49b2518316; xq_r_token=91c25a6a9038fa2532dd45b2dd9b573a35e28cfd; xq_id_token=eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiJ9.eyJ1aWQiOi0xLCJpc3MiOiJ1YyIsImV4cCI6MTYwMjY0MzAyMCwiY3RtIjoxNjAwNzU5MjY3OTEwLCJjaWQiOiJkOWQwbjRBWnVwIn0.bengzIpmr0io9f44NJdHuc_6g9EIjtrSlMgnqwKSWVzI4syI_yIH1F-GJfK4bTelWzDirufjWMW9DfDMyMkI75TpJqiwIq8PRsa1bQ7IuCXLbN71ebsiTOGfA5OsWSPQOdVXQA0goqC4yvXLOk5KgC5FQIzZut0N4uaRDLsq7vhmcb8CBw504tCZnbIJTfGGIFIfw7TkwuUCXGY6Q-0mlOG8U4EUTcOCuxN87Ej_OIKnXN8cTSVh7XW6SFxOgU6p3yUXDgvS04rt-nFewpNNqfbGAKk965N-HJ9Mq8E52BRJ3rt_ndYP8yCaeQ6xSsz5P2mNlKwNFe9EQeltim_mDg; u=501600759279498; device_id=24700f9f1986800ab4fcc880530dd0ed; Hm_lvt_1db88642e346389874251b5a1eded6e3=1600759286; _ga=GA1.2.2049292015.1600759388; _gid=GA1.2.391362708.1600759388; s=du11eogy79; __utma=1.2049292015.1600759388.1600759397.1600759397.1; __utmc=1; __utmz=1.1600759397.1.1.utmcsr=(direct)|utmccn=(direct)|utmcmd=(none); __utmt=1; __utmb=1.3.10.1600759397; Hm_lpvt_1db88642e346389874251b5a1eded6e3=1600759448'

}

headers = {

'Host': 'xueqiu.com',

'Pragma': 'no-cache',

'Referer': 'https://xueqiu.com/hq',

'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/81.0.4044.138 Safari/537.36'

}

response = requests.get(url=url, params=params, headers=headers, cookies=cookies)

html_data = response.json()

data_list = html_data['data']['list']

for i in data_list:

dit = {}

dit['股票代码'] = i['symbol']

dit['股票名称'] = i['name']

dit['当前价'] = i['current']

dit['涨跌额'] = i['chg']

dit['涨跌幅/%'] = i['percent']

dit['年初至今/%'] = i['current_year_percent']

dit['成交量'] = i['volume']

dit['成交额'] = i['amount']

dit['换手率/%'] = i['turnover_rate']

dit['市盈率TTM'] = i['pe_ttm']

dit['股息率/%'] = i['dividend_yield']

dit['市值'] = i['market_capital']

csv_writer.writerow(dit)

print(dit)

f.close()

2020926143428633.jpg?2020826143440

2020926143459691.jpg?202082614357

数据分析代码

c = (

Bar()

.add_xaxis(list(df2['股票名称'].values))

.add_yaxis("股票成交量情况", list(df2['成交量'].values))

.set_global_opts(

title_opts=opts.TitleOpts(title="成交量图表 - Volume chart"),

datazoom_opts=opts.DataZoomOpts(),

)

.render("data.html")

)

2020926143549602.jpg?2020826143559

以上就是Python爬取股票信息,并可视化数据的示例的详细内容,更多关于Python爬取股票信息的资料请关注脚本之家其它相关文章!

这篇关于python爬虫股票数据分析判断股票好坏_Python爬取股票信息,并可视化数据的示例...的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:https://blog.csdn.net/weixin_39979489/article/details/110064387
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/569599

相关文章

Python实现批量提取BLF文件时间戳

《Python实现批量提取BLF文件时间戳》BLF(BinaryLoggingFormat)作为Vector公司推出的CAN总线数据记录格式,被广泛用于存储车辆通信数据,本文将使用Python轻松提取... 目录一、为什么需要批量处理 BLF 文件二、核心代码解析:从文件遍历到数据导出1. 环境准备与依赖库

go动态限制并发数量的实现示例

《go动态限制并发数量的实现示例》本文主要介绍了Go并发控制方法,通过带缓冲通道和第三方库实现并发数量限制,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录带有缓冲大小的通道使用第三方库其他控制并发的方法因为go从语言层面支持并发,所以面试百分百会问到

PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例

《PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例》词嵌入解决NLP维度灾难,捕捉语义关系,PyTorch的nn.Embedding模块提供灵活实现,支持参数配置、预训练及变长... 目录一、词嵌入(Word Embedding)简介为什么需要词嵌入?二、PyTorch中的nn.Em

Python Web框架Flask、Streamlit、FastAPI示例详解

《PythonWeb框架Flask、Streamlit、FastAPI示例详解》本文对比分析了Flask、Streamlit和FastAPI三大PythonWeb框架:Flask轻量灵活适合传统应用... 目录概述Flask详解Flask简介安装和基础配置核心概念路由和视图模板系统数据库集成实际示例Stre

Spring Bean初始化及@PostConstruc执行顺序示例详解

《SpringBean初始化及@PostConstruc执行顺序示例详解》本文给大家介绍SpringBean初始化及@PostConstruc执行顺序,本文通过实例代码给大家介绍的非常详细,对大家的... 目录1. Bean初始化执行顺序2. 成员变量初始化顺序2.1 普通Java类(非Spring环境)(

Python实现PDF按页分割的技术指南

《Python实现PDF按页分割的技术指南》PDF文件处理是日常工作中的常见需求,特别是当我们需要将大型PDF文档拆分为多个部分时,下面我们就来看看如何使用Python创建一个灵活的PDF分割工具吧... 目录需求分析技术方案工具选择安装依赖完整代码实现使用说明基本用法示例命令输出示例技术亮点实际应用场景扩

C#监听txt文档获取新数据方式

《C#监听txt文档获取新数据方式》文章介绍通过监听txt文件获取最新数据,并实现开机自启动、禁用窗口关闭按钮、阻止Ctrl+C中断及防止程序退出等功能,代码整合于主函数中,供参考学习... 目录前言一、监听txt文档增加数据二、其他功能1. 设置开机自启动2. 禁止控制台窗口关闭按钮3. 阻止Ctrl +

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使

Java Spring的依赖注入理解及@Autowired用法示例详解

《JavaSpring的依赖注入理解及@Autowired用法示例详解》文章介绍了Spring依赖注入(DI)的概念、三种实现方式(构造器、Setter、字段注入),区分了@Autowired(注入... 目录一、什么是依赖注入(DI)?1. 定义2. 举个例子二、依赖注入的几种方式1. 构造器注入(Con

Spring Boot 3.x 中 WebClient 示例详解析

《SpringBoot3.x中WebClient示例详解析》SpringBoot3.x中WebClient是响应式HTTP客户端,替代RestTemplate,支持异步非阻塞请求,涵盖GET... 目录Spring Boot 3.x 中 WebClient 全面详解及示例1. WebClient 简介2.