基于多反应堆的高并发服务器【C/C++/Reactor】(中)子线程 WorkerThread的实现 和 线程池ThreadPool的初始化

本文主要是介绍基于多反应堆的高并发服务器【C/C++/Reactor】(中)子线程 WorkerThread的实现 和 线程池ThreadPool的初始化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、子线程 WorkerThread的实现

(1)工作线程

  • 线程ID:每个线程都有一个唯一的ID,用于标识
  • 线程的名字:非必需,主要用于识别线程
  • 互斥锁:线程同步
  • 条件变量:线程阻塞
  • EventLoop:在每个子线程里边都有一个反应堆模型

// 定义子线程对应的结构体
struct WokerThread {pthread_t threadID;// 线程IDchar name[24];// 线程名字pthread_mutex_t mutex;// 互斥锁(线程同步)pthread_cond_t cond;// 条件变量(线程阻塞)struct EventLoop* evLoop;// 事件循环(反应堆模型)// 在每个子线程里边都有一个反应堆模型
};

(2)工作线程初始化

// 初始化
int workerThreadInit(struct WokerThread* thread, int index);
// 初始化
int workerThreadInit(struct WokerThread* thread, int index) {thread->threadID = 0;// 线程IDsprintf(thread->name, "SubThread-%d", index);// 线程名字// 指定为NULL,表示使用默认属性pthread_mutex_init(&thread->mutex, NULL);// 互斥锁pthread_cond_init(&thread->cond, NULL);// 条件变量thread->evLoop = NULL;// 事件循环(反应堆模型)return 0;
}

(3)启动线程

// 启动线程
void workerThreadRun(struct WokerThread* thread);
// 子线程的回调函数
void* subThreadRunning(void* arg) {struct WokerThread* thread = (struct WokerThread*)arg;// 还有子线程里边的evLoop是共享资源,需要添加互斥锁pthread_mutex_lock(&thread->mutex);// 加锁thread->evLoop = eventLoopInitEx(thread->name);pthread_mutex_unlock(&thread->mutex);// 解锁pthread_cond_signal(&thread->cond);// 发送信号(唤醒主线程,通知主线程解除阻塞)eventLoopRun(thread->evLoop);// 启动反应堆模型return NULL;
}// 启动线程
void workerThreadRun(struct WokerThread* thread) {// 创建子线程pthread_create(&thread->threadID, NULL, subThreadRunning, thread);/*在这里阻塞主线程的原因是:在于子线程的反应堆模型是否被真正的创建出来了?因此,可以判断一下thread->evLoop是否为NULL,如果等于NULL,说明子线程反应堆模型还没有被初始化完毕,没有初始化完毕,我们就阻塞主线程*/// 阻塞主线程,让当前函数不会直接结束pthread_mutex_lock(&thread->mutex);while(thread->evLoop == NULL) { // 多次判断pthread_cond_wait(&thread->cond, &thread->mutex);// 子线程的回调函数(subThreadRunning)里调用pthread_cond_signal(&thread->cond)可以解除这里的阻塞}pthread_mutex_unlock(&thread->mutex);
}

二、线程池ThreadPool的初始化 

  • ThreadPool.h 
// 定义线程池
struct ThreadPool {/*在线程池里边的这个mainLoop主要是做备份用的,主线程里边的mainLoop主要负责和客户端建立连接,只负责这一件事情,只有当线程池没有子线程这种情况下,mainLoop才负责处理和客户端的连接,否则的话它是不管其他事情的。*/struct EventLoop* mainLoop; // 主线程的反应堆模型int index; bool isStart;int threadNum; // 子线程总个数struct WorkerThread* workerThreads;
};

在线程池里边其实管理一个WorkerThreads数组,在这个数组里边有若干个元素,每个元素里边都有一个WorkerThread对象,把这若干个子线程对象初始化出来。之后,每个子线程里边都有一个EventLoop(反应堆模型),子线程处理的任务其实就是EventLoop里边的任务。

除此之外,在线程池里边还可以添加一个变量用来标记当前线程池是否启动:isStart默认情况下,肯定是不启动的状态的,即isStart = false;

ThreadNum用来记录当前线程池里边的子线程的个数,就是WorkerThreads数组的元素个数,它们有对应关系。

index记录线程池里边子线程的编号,通过这个index就能够访问线程池里边某个线程。

>>思考:为什么我们要访问线程池里边的某一个线程?

场景:主线程和客户端建立了连接,之后,就需要和客户端通信,那么这个通信的文件描述符和客户端通信流程需要交给子线程去处理,每个子线程里边都有一个EventLoop(反应堆模型),就需要把这个通信的文件描述符交给这个反应堆模型去管理,检测这个文件描述符的事件,如果有读事件,说明客户端有数据发送过来,那么我们就需要接收数据,然后再给客户端回复数据,这些都是在子线程的反应堆模型里边做的。所以当这个连接建立之后,主线程就要从线程池里边找出一个子线程,并且把这个任务给到子线程去处理。

但是存在一个问题:假设只有三个子线程,在找子线程的时候,不可能每次都找workerThread1,如果每次都是workerThread1,那么workerThread2, workerThread3就空闲下来了,为了雨露均沾,可以用index表示当前访问的线程到底是谁,如果这次访问线程1,那么下次就是线程2。如果这次访问线程2,那么下次就是线程3。如果这次访问线程3,那么下次就是线程1。

还有另外一个反应堆模型,这个是属于主线程的,并不用在ThreadPool线程池里边再去实例化一个EventLoop。其实是把主线程的这个EventLoop给到线程池,目的是:假设说这个线程池的ThreadNum=0,此时这个线程池里边就没有子线程了,也就没有反应堆模型了,也就没有办法工作,在这种情况下,我们就可以让线程池使用主线程的反应堆模型,这样就能够保证线程池还能够继续工作,只不过在当前服务器框架里边,它的反应堆模型就从多个变成了一个,所有的任务都变成了全部由主线程的反应堆模型来处理了。

在线程池里边的这个mainLoop主要是做备份用的,主线程里边的mainLoop主要负责和客户端建立连接,只负责这一件事情,只有当线程池没有子线程这种情况下,mainLoop才负责处理和客户端的连接,否则的话它是不管其他事情的。

总结:

(1)定义与作用:线程池是若干个线程的集合,主要用于管理复用线程,减少线程的创建和销毁的开销

(2)结构组成

  • WorkerThreads数组:存储子线程对象,每个元素代表一个workerThread对象

  • ThreadNumber:记录线程池中线程的个数,与WorkerThreads数组的元素个数对应

  • index:记录线程池中子线程的编号,用于访问特定线程

  • 主线程的EventLoop:当线程池中无子线程时,主线程的EventLoop可作为备选方案,确保线程池仍能处理任务

(3)工作原理:当连接建立后,主线程从线程池中选择一个子线程来处理任务。每个子线程都有一个内部的反应堆模型(EventLoop)来处理任务。 如果线程池中没有子线程,主线程的反应堆模型将被使用,确保线程池仍能工作

(4)启动与状态标记:通过一个布尔类型的变量来标记线程池是否已启动

  • ThreadPool.h  
// 初始化线程池
struct ThreadPool* threadPoolInit(struct EventLoop* mainLoop, int threadNum);
  • ThreadPool.c
// 初始化线程池
struct ThreadPool* threadPoolInit(struct EventLoop* mainLoop, int threadNum) {struct ThreadPool* pool = (struct ThreadPool*)malloc(sizeof(struct ThreadPool));pool->mainLoop = mainLoop; // 主线程的反应堆模型pool->index = 0;pool->isStart = false;pool->threadNum = threadNum; // 子线程总个数pool->workerThreads = (struct WokerThread*)malloc(sizeof(struct WokerThread) * threadNum); // 子线程数组return pool;
}

>>内容概要 :本文主要介绍了线程池的概念、结构组成和工作原理

>>核心观点 :

1. 线程池是若干个线程的集合,用于管理和复用线程,减少线程的创建和销毁开销

2. 线程池包括WorkerThreads数组、ThreadNumber、index等结构组成

3. 工作原理是主线程从线程池中选择一个子线程来处理任务,每个子线程都有一个反应堆模型来处理任务

这篇关于基于多反应堆的高并发服务器【C/C++/Reactor】(中)子线程 WorkerThread的实现 和 线程池ThreadPool的初始化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/569182

相关文章

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

C++右移运算符的一个小坑及解决

《C++右移运算符的一个小坑及解决》文章指出右移运算符处理负数时左侧补1导致死循环,与除法行为不同,强调需注意补码机制以正确统计二进制1的个数... 目录我遇到了这么一个www.chinasem.cn函数由此可以看到也很好理解总结我遇到了这么一个函数template<typename T>unsigned

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Java实现字节字符转bcd编码

《Java实现字节字符转bcd编码》BCD是一种将十进制数字编码为二进制的表示方式,常用于数字显示和存储,本文将介绍如何在Java中实现字节字符转BCD码的过程,需要的小伙伴可以了解下... 目录前言BCD码是什么Java实现字节转bcd编码方法补充总结前言BCD码(Binary-Coded Decima