以STM32为例,实现按键的短按和长按

2024-01-03 20:12

本文主要是介绍以STM32为例,实现按键的短按和长按,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

以STM32为例,实现按键的短按和长按

目录

  • 以STM32为例,实现按键的短按和长按
    • 1 实现原理
    • 2 实现代码
    • 3 测试
    • 结束语

1 实现原理

简单来说就是通过设置一个定时器来定时扫描几个按键的状态,并分别记录按键按下的持续时间,通过时间的长短就可以判断出是长按还是短按。

本文硬件接线图如下:
在这里插入图片描述
在这里插入图片描述

2 实现代码

1、key.h
主要是一些按键引脚以及后面需要使用的变量定义。

#ifndef __KEY_H
#define __KEY_H	 
#include "sys.h"#define KEY1_PORT  GPIOE
#define KEY1_PIN   GPIO_Pin_4
#define KEY2_PORT  GPIOE
#define KEY2_PIN   GPIO_Pin_3
#define KEY3_PORT  GPIOE
#define KEY3_PIN   GPIO_Pin_2
#define KEY4_PORT  GPIOA
#define KEY4_PIN   GPIO_Pin_0// 按键引脚定义
typedef struct
{GPIO_TypeDef* port;          // GPIOxuint16_t      pin;           // GPIO PINxuint16_t      pressed_state; // 按键按下时的状态,0:按下时为低电平,1:按下时为高电平
}key_gpio_t;// 按键状态
typedef enum
{KEY_RELEASE,         // 释放松开KEY_CONFIRM,         // 消抖确认KEY_SHORT_PRESSED,   // 短按KEY_LONG_PRESSED,    // 长按
}key_status_t;// 按键事件
typedef enum
{EVENT_NULL,EVENT_SHORT_PRESSED,EVENT_LONG_PRESSED,
}key_event_t;typedef struct
{key_status_t current_state; // 按键当前状态uint32_t  pressed_time;     // 按下时间    key_event_t key_event;      // 按键事件
}key_param_t;uint8_t read_key_state(uint8_t index);
uint8_t key_scan(void);
void key_handle(void);
void key_timer_init(void);
void key_gpio_init(void);
void key_init(void);#endif

2、key.c
按键的实现代码,包括定时器和引脚的初始化,按键的扫描和处理函数,等等。

/*********************************************************************************************************** @file           key.c* @author         qiyiqi* @brief          按键驱动代码* MCU:            STM32F103ZE开发板* 按键原理:       设置一个1ms定时器定时扫描几个按键的状态,并分别记录按下的持续时间,通过时间可以判断是长按还是*                 短按。    * 注意事项:       此代码只是作为一个参考例程,如果不使用STM32的标准库,移植到其他MCU或者HAL库之类的,主要修改的*                 地方在初始化函数key_init(),按键读取函数read_key_state(),定时器初始化以及中断服务函数等。*********************************************************************************************************/
#include "key.h"
#include "stdio.h"// 按键列表
key_gpio_t key_list[] =
{// 端口号,引脚号,有效电平{KEY1_PORT, KEY1_PIN, 0},  // 按下为0,松开为1{KEY2_PORT, KEY2_PIN, 0},{KEY3_PORT, KEY3_PIN, 0},  // 按下为1,松开为0{KEY4_PORT, KEY4_PIN, 1},/* 可以继续往下添加更多按键 */
};// 按键数量
#define KEY_NUM_MAX      (sizeof(key_list)/sizeof(key_list[0]))  
#define CONFIRM_TIME     20    // 消抖时间 ms
#define LONG_PRESS_TIME  2000  // 长按时间窗 ms// 按键配置
#define SHORT_RELEASE_VALID  1 // 0:短按按下时即刻生效,1:短按释放时生效,注意:如果配成0的话,长按的时候就一定会先触发短按
#define LONG_RELEASE_VALID   1 // 0:长按按下时即刻生效,1:长按释放时生效key_param_t key_param[KEY_NUM_MAX]; // 保存所有按键的状态// 读取按键状态
uint8_t read_key_state(uint8_t index)
{if(GPIO_ReadInputDataBit(key_list[index].port, key_list[index].pin) == key_list[index].pressed_state){// 按键按下return 1; }return 0;
}// 扫描单个按键状态(需要按1ms频率扫描)
uint8_t key_scan(void)
{uint8_t key_press;uint8_t index;for(index = 0; index < KEY_NUM_MAX; index++){// 根据按键列表依次扫描key_press = read_key_state(index);  // 读取按键状态switch (key_param[index].current_state)                                    {// 按键状态机case KEY_RELEASE:{// 释放状态if(key_press)                                                                                                 {// 按键按下key_param[index].current_state = KEY_CONFIRM;}else{// 按键松开key_param[index].pressed_time = 0; }break;}case KEY_CONFIRM:{// 按键消抖if(key_press){// 按键保持按下if(++key_param[index].pressed_time > CONFIRM_TIME)    // 10ms{// 完成消抖key_param[index].current_state = KEY_SHORT_PRESSED;#if (SHORT_RELEASE_VALID == 0)  // 短按按下立马生效key_param[index].key_event = EVENT_SHORT_PRESSED;  // 短按事件生效#endif}}else{// 按键松开key_param[index].current_state = KEY_RELEASE;}break;}case KEY_SHORT_PRESSED:{// 短按if(key_press){// 按键保持按下if(++key_param[index].pressed_time > LONG_PRESS_TIME)  // 2000ms{// 长按key_param[index].current_state = KEY_LONG_PRESSED;#if (LONG_RELEASE_VALID == 0)  // 长按按下立马生效key_param[index].key_event = EVENT_LONG_PRESSED;  // 长按事件生效#endif}}else   {// 按键松开key_param[index].current_state = KEY_RELEASE;#if (SHORT_RELEASE_VALID == 1)  // 短按释放才生效key_param[index].key_event = EVENT_SHORT_PRESSED;  // 短按事件生效#endif}break;}case KEY_LONG_PRESSED:{// 长按if(!key_press)          {// 按键松开key_param[index].current_state = KEY_RELEASE;#if (LONG_RELEASE_VALID == 1)  // 长按释放才生效key_param[index].key_event = EVENT_LONG_PRESSED;  // 长按事件生效#endif} break;}default:{key_param[index].current_state = KEY_RELEASE;}}}return 0;                            
}// 按键处理函数
void key_handle(void)
{uint8_t index;for (index = 0; index < KEY_NUM_MAX; index++){// 检查有无按键按下if(key_param[index].key_event != 0){// 有按键按下switch (index){case 0:{// 按键1if(key_param[index].key_event == EVENT_SHORT_PRESSED){// 短按printf("KEY1 SHORT PRESSED\n");}else if(key_param[index].key_event == EVENT_LONG_PRESSED){// 长按printf("KEY1 LONG PRESSED\n");}break;}case 1:{// 按键2if(key_param[index].key_event == EVENT_SHORT_PRESSED){// 短按printf("KEY2 SHORT PRESSED\n");}else if(key_param[index].key_event == EVENT_LONG_PRESSED){// 长按printf("KEY2 LONG PRESSED\n");}break;}case 2:{// 按键3if(key_param[index].key_event == EVENT_SHORT_PRESSED){// 短按printf("KEY3 SHORT PRESSED\n");}else if(key_param[index].key_event == EVENT_LONG_PRESSED){// 长按printf("KEY3 LONG PRESSED\n");}break;}case 3:{// 按键4if(key_param[index].key_event == EVENT_SHORT_PRESSED){// 短按printf("KEY4 SHORT PRESSED\n");}else if(key_param[index].key_event == EVENT_LONG_PRESSED){// 长按printf("KEY4 LONG PRESSED\n");}break;}default:{break;}}key_param[index].key_event = EVENT_NULL;  // 清除该事件}}
}// 定时器中断服务程序(用于定时扫描按键)
void TIM3_IRQHandler(void)
{if (TIM_GetITStatus(TIM3, TIM_IT_Update) != RESET)  // 检查TIM3更新中断发生与否{key_scan();  // 扫描按键TIM_ClearITPendingBit(TIM3, TIM_IT_Update);  // 清除TIMx更新中断标志 }
}// 定时器初始化(定时1ms)
void key_timer_init(void)
{TIM_TimeBaseInitTypeDef  TIM_TimeBaseStructure;NVIC_InitTypeDef NVIC_InitStructure;RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE); //时钟使能//定时器TIM3初始化TIM_TimeBaseStructure.TIM_Period = 1000 - 1; //设置在下一个更新事件装入活动的自动重装载寄存器周期的值    TIM_TimeBaseStructure.TIM_Prescaler = SystemCoreClock / 1000000 - 1; //设置用来作为TIMx时钟频率除数的预分频值TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1; //设置时钟分割:TDTS = Tck_timTIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;  //TIM向上计数模式TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure); //根据指定的参数初始化TIMx的时间基数单位TIM_ITConfig(TIM3,TIM_IT_Update,ENABLE ); //使能指定的TIM3中断,允许更新中断//中断优先级NVIC设置NVIC_InitStructure.NVIC_IRQChannel = TIM3_IRQn;  //TIM3中断NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;  //先占优先级0级NVIC_InitStructure.NVIC_IRQChannelSubPriority = 3;  //从优先级3级NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //IRQ通道被使能NVIC_Init(&NVIC_InitStructure);  //初始化NVIC寄存器TIM_Cmd(TIM3, ENABLE);  //使能TIMx    
}// 按键引脚初始化
void key_gpio_init(void)
{GPIO_InitTypeDef  GPIO_InitStructure;RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_GPIOE, ENABLE);    GPIO_InitStructure.GPIO_Pin = KEY1_PIN;                 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;          GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;        GPIO_Init(KEY1_PORT, &GPIO_InitStructure);        GPIO_InitStructure.GPIO_Pin = KEY2_PIN;                 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;          GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;        GPIO_Init(KEY2_PORT, &GPIO_InitStructure);GPIO_InitStructure.GPIO_Pin = KEY3_PIN;                 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;          GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;        GPIO_Init(KEY3_PORT, &GPIO_InitStructure);GPIO_InitStructure.GPIO_Pin = KEY4_PIN;                 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPD;          GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;        GPIO_Init(KEY4_PORT, &GPIO_InitStructure);
}// 按键初始化
void key_init(void)
{key_gpio_init();key_timer_init();
}

3、main.c
主函数入口,这里调用按键驱动的代码。

#include "delay.h"
#include "sys.h"
#include "usart.h"
#include "key.h"int main(void)
{		delay_init();       // 延时函数初始化	  uart_init(115200);	// 串口初始化为115200key_init();         // 按键初始化while(1){	    	key_handle();}
}

3 测试

通过串口打印按键扫描的结果,可以看到每个按键都是可以实现独立的长短按功能。

按键释放时有效,log如下:
注:每个按键的长短按都独立,互不影响。
请添加图片描述
按键按下时有效,log如下:
注:长按触发之前,短按必先触发。
请添加图片描述

结束语

本文以STM32为例讲解了按键长按和短按的实现方法,当然,这只是其中一种方法,实现的方式其实还是很多。
好了,如果还有什么问题,欢迎评论区留言,谢谢!

如果觉得本文有帮助,就…你懂的。
请添加图片描述

这篇关于以STM32为例,实现按键的短按和长按的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/566914

相关文章

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

PostgreSQL中MVCC 机制的实现

《PostgreSQL中MVCC机制的实现》本文主要介绍了PostgreSQL中MVCC机制的实现,通过多版本数据存储、快照隔离和事务ID管理实现高并发读写,具有一定的参考价值,感兴趣的可以了解一下... 目录一 MVCC 基本原理python1.1 MVCC 核心概念1.2 与传统锁机制对比二 Postg

SpringBoot整合Flowable实现工作流的详细流程

《SpringBoot整合Flowable实现工作流的详细流程》Flowable是一个使用Java编写的轻量级业务流程引擎,Flowable流程引擎可用于部署BPMN2.0流程定义,创建这些流程定义的... 目录1、流程引擎介绍2、创建项目3、画流程图4、开发接口4.1 Java 类梳理4.2 查看流程图4

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

基于Python实现一个Windows Tree命令工具

《基于Python实现一个WindowsTree命令工具》今天想要在Windows平台的CMD命令终端窗口中使用像Linux下的tree命令,打印一下目录结构层级树,然而还真有tree命令,但是发现... 目录引言实现代码使用说明可用选项示例用法功能特点添加到环境变量方法一:创建批处理文件并添加到PATH1

Java使用HttpClient实现图片下载与本地保存功能

《Java使用HttpClient实现图片下载与本地保存功能》在当今数字化时代,网络资源的获取与处理已成为软件开发中的常见需求,其中,图片作为网络上最常见的资源之一,其下载与保存功能在许多应用场景中都... 目录引言一、Apache HttpClient简介二、技术栈与环境准备三、实现图片下载与保存功能1.

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal