ards数据集合 脓毒症 jimmy学徒 优秀代码 split灵活应用

本文主要是介绍ards数据集合 脓毒症 jimmy学徒 优秀代码 split灵活应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

GEO Accession viewer

GEO Accession viewerNCBI's Gene Expression Omnibus (GEO) is a public archive and resource for gene expression data.https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE65682

 2. 拿相应的细胞Marker进行注释再看看,其实前一个注释结果就够(T细胞Mareker) --------------------------p=DimPlot(sce,reduction = "umap",label=T )  
sce.all = sce# yT1c=c("GNLY","PTGDS","GZMB","TRDC"),
# yT2c=c("TMN1","HMGB2","TYMS")
genes_to_check =list( naive=c("CCR7","SELL","TCF7","IL7R","CD27","CD28","LEF1","S1PR1"),CD8Trm=c("XCL1","XCL2","MYADM"),NKTc=c("GNLY","GZMA"), Tfh=c("CXCR5","BCL6","ICA1","TOX","TOX2","IL6ST"),th17=c("IL17A","KLRB1","CCL20","ANKRD28","IL23R","RORC","FURIN","CCR6","CAPG","IL22"),CD8Tem=c("CXCR4","GZMH","CD44","GZMK"),Treg=c("FOXP3","IL2RA","TNFRSF18","IKZF2"),naive=c("CCR7","SELL","TCF7","IL7R","CD27","CD28"),CD8Trm=c("XCL1","XCL2","MYADM"), MAIT=c("KLRB1","ZBTB16","NCR3","RORA"),yT1c=c("GNLY","PTGDS","GZMB","TRDC"),yT2c=c("TMN1","HMGB2","TYMS"),yt=c("TRGV9","TRDV2")
)
genes_to_check = lapply(genes_to_check, str_to_title)
dup=names(table(unlist(genes_to_check)))[table(unlist(genes_to_check))>1] #取出重名的marker基因
genes_to_check = lapply(genes_to_check, function(x) x[!x %in% dup]) #取出未重名的基因
p_all_markers=DotPlot(sce.all,  group.by = "RNA_snn_res.0.8",features = genes_to_check,scale = T,assay='RNA' )+theme(axis.text.x=element_text(angle=45,hjust = 1))
p_all_markers+p
ggsave('check_cd4_and_cd8T_markers.pdf',width = 9 )

# 拆成细胞类型对应的细胞list(CyclingT、CytoticT、NaiveT)
cell_list = split(colnames(sce.all),sce.all$celltype)
cell_list#获得相应细胞类型,对应的样本ID
names(cell_list)# 4.每个celltype不同分组之间差异分析 ----
dir.create("./by_celltype")
setwd("./by_celltype/")
getwd()

# 4.每个celltype不同分组之间差异分析 ----
dir.create("./by_celltype")
setwd("./by_celltype/")
getwd()# 利用FindAllMarkers进行差异分析---整个流程值得借鉴(针对每一种细胞类型在组别间分别进行差异分析)
# 保存每一种细胞类型的差异分析结果、对应细胞类型topMarker的Rdata、每种细胞类型top10气泡图与热图
for ( pro in names(cell_list) ) {#pro=names(cell_list)[1]sce=sce.all[,colnames(sce.all) %in% cell_list[[pro]]]sce <- CreateSeuratObject(counts = sce@assays$RNA@counts, meta.data = sce@meta.data, min.cells = 3, min.features = 200)  sce <- NormalizeData(sce)  sce = FindVariableFeatures(sce)sce = ScaleData(sce, vars.to.regress = c("nFeature_RNA","percent_mito"))Idents(sce)=sce$group #组别信息;后续用组别信息比较(赋值ident)table(Idents(sce))# 利用FindAllMarkers进行差异分析sce.markers <- FindAllMarkers(object = sce, only.pos = TRUE, logfc.threshold = 0.2,min.pct = 0.2, thresh.use = 0.2) write.csv(sce.markers,file=paste0(pro,'_sce.markers.csv'))sce.markers=sce.markers[order(sce.markers$cluster,sce.markers$avg_log2FC),]library(dplyr) top10 <- sce.markers %>% group_by(cluster) %>% top_n(10, avg_log2FC)# sce.Scale <- ScaleData(subset(sce,downsample=100),features =  unique(top10$gene)  )  sce.Scale <- ScaleData( sce ,features =  unique(top10$gene)  )  DoHeatmap(sce.Scale,features =  unique(top10$gene),# group.by = "celltype",assay = 'RNA', label = T)+scale_fill_gradientn(colors = c("white","grey","firebrick3"))ggsave(filename=paste0(pro,'_sce.markers_heatmap.pdf'),height = 8)p <- DotPlot(sce , features = unique(top10$gene)  ,assay='RNA'  )  + coord_flip()pggsave(plot=p, filename=paste0("check_top10-marker_by_",pro,"_cluster.pdf") ,height = 8)save(sce.markers,file=paste0(pro,'_sce.markers.Rdata')) }

细胞比例图library(ggsci)
ggplot(bar_per, aes(x = Var1, y = percent)) +geom_bar(aes(fill = Var2) , stat = "identity") + coord_flip() +theme(axis.ticks = element_line(linetype = "blank"),legend.position = "top",panel.grid.minor = element_line(colour = NA,linetype = "blank"), panel.background = element_rect(fill = NA),plot.background = element_rect(colour = NA)) +labs(y = "% Relative cell source", fill = NULL)+labs(x = NULL)+scale_fill_d3() #分组之间各种细胞占比ggsave("celltype_by_group_percent.pdf",units = "cm",width = 20,height = 12)
## 4.2 每种细胞类型中,各个样本所占比例 ----
bar_data <- as.data.frame(table(phe$celltype,phe$orig.ident))bar_per <- bar_data %>% group_by(Var1) %>%mutate(sum(Freq)) %>%mutate(percent = Freq / `sum(Freq)`)
bar_perwrite.csv(bar_per,file = "celltype_by_orig.ident_percent.csv")
ggplot(bar_per, aes(x = Var1, y = percent)) +geom_bar(aes(fill = Var2) , stat = "identity") + coord_flip() +theme(axis.ticks = element_line(linetype = "blank"),legend.position = "top",panel.grid.minor = element_line(colour = NA,linetype = "blank"), panel.background = element_rect(fill = NA),plot.background = element_rect(colour = NA)) +labs(y = "% Relative cell source", fill = NULL)+labs(x = NULL) ggsave("celltype_by_orig.ident_percent.pdf",units = "cm",width = 20,height = 12)

#自建函数# 自定义绘图函数,运行即可
head(phe)
plot_percent <- function(x,y){# x <- "group"# y <- "celltype"plot_data <- data.frame(table(phe[, x ],phe[, y ]))plot_data$Total <- apply(plot_data,1,function(x)sum(plot_data[plot_data$Var1 == x[1],3]))plot_data <- plot_data %>% mutate(Percentage = round(Freq/Total,3) * 100)pro <- xwrite.table(plot_data,paste0(pro,"_celltype_proportion.txt"),quote = F)th=theme(axis.text.x = element_text(angle = 45, vjust = 0.5, hjust=0.5)) library(paletteer) color <- c(paletteer_d("awtools::bpalette"),paletteer_d("awtools::a_palette"),paletteer_d("awtools::mpalette"))ratio1 <- ggplot(plot_data,aes(x = Var1,y = Percentage,fill = Var2)) +geom_bar(stat = "identity",position = "stack") +scale_fill_manual(values = color)+theme_classic() + theme(axis.title.x = element_blank()) + labs(fill = "Cluster") +th ratio1f=paste0('ratio_by_',x,'_VS_',y)h=floor(5+length(unique(plot_data[,1]))/2)w=floor(3+length(unique(plot_data[,2]))/2)ggsave(paste0('bar1_',f,'.pdf'),ratio1,height = h ,width = w ) pdf(paste0('balloonplot_',f,'.pdf'),height = 12 ,width = 20)balloonplot(table(phe[, x ],phe[, y ]))dev.off()plot_data$Total <- apply(plot_data,1,function(x)sum(plot_data[plot_data$Var1 == x[1],3]))plot_data<- plot_data %>% mutate(Percentage = round(Freq/Total,3) * 100)bar_Celltype=ggplot(plot_data,aes(x = Var1,y = Percentage,fill = Var2)) +geom_bar(stat = "identity",position = "stack") +theme_classic() + theme(axis.text.x=element_text(angle=45,hjust = 1)) + labs(fill = "Cluster")+facet_grid(~Var2,scales = "free")bar_Celltypeggsave(paste0('bar2_',f,'.pdf'),bar_Celltype,height = 8 ,width =  40) 
}## 4.3 每个分组中,不同细胞类型所占比例 ----plot_percent("group","celltype")## 4.4 每个分组中,不同细胞类型所占比例 ----
plot_percent("orig.ident","celltype")

#分组富集分析
getwd()  #"G:/linux study/hsp70_human/ref/201023国庆授课检查版/4_group"
setwd("G:/linux study/hsp70_human/ref/201023国庆授课检查版/4_group")
dir.create("../5_GO_KEGG")
setwd("../5_GO_KEGG/")
getwd()  #"G:/linux study/hsp70_human/ref/201023国庆授课检查版/5_GO_KEGG"# 对各个亚群的topMarker基因进行降维聚类分群 -----------------------------------------------## 3.1 kegg and go by cluster ----
# 只针对find的各个亚群top基因
# 现在我们选择了COSG算法if(T){# 3.all 读取数据富集分析-## 3.1 kegg and go by cluster 可视化 ----f = '../3-cell/harmony-sce.markers.Rdata' #决定了找簇与簇的显著富集的KEGG通路# 这个Rdata数据源于step3.1,针对簇利用FindAllMarker找簇的Top Marker 基因if(file.exists(f)){load(file = f)sce.markers=sce.markers[sce.markers$avg_log2FC > 0,]top1000 <- sce.markers %>% group_by(cluster) %>% top_n(1000, avg_log2FC)head(top1000) library(ggplot2)ids=bitr(top1000$gene,'SYMBOL','ENTREZID','org.Mm.eg.db')top1000=merge(top1000,ids,by.x='gene',by.y='SYMBOL')gcSample=split(top1000$ENTREZID, top1000$cluster) #分组太强大了 切割 按照组别切割splitgcSample # entrez id , compareCluster names(gcSample)xx <- compareCluster(gcSample, fun="enrichKEGG",organism="mmu")str(xx)p=dotplot(xx) p+ theme(axis.text.x = element_text(angle = 45, vjust = 0.5, hjust=0.5))ggsave('compareCluster-KEGG-top1000-cluster.pdf',width = 18,height = 8)xx <- compareCluster(gcSample, fun="enrichGO",OrgDb='org.Mm.eg.db')summary(xx)p=dotplot(xx) p+ theme(axis.text.x = element_text(angle = 90, vjust = 0, hjust=1))ggsave('compareCluster-GO-top1000-cluster.pdf',width = 15,height = 12)}}

这篇关于ards数据集合 脓毒症 jimmy学徒 优秀代码 split灵活应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/566583

相关文章

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

Python 基于http.server模块实现简单http服务的代码举例

《Python基于http.server模块实现简单http服务的代码举例》Pythonhttp.server模块通过继承BaseHTTPRequestHandler处理HTTP请求,使用Threa... 目录测试环境代码实现相关介绍模块简介类及相关函数简介参考链接测试环境win11专业版python

Python从Word文档中提取图片并生成PPT的操作代码

《Python从Word文档中提取图片并生成PPT的操作代码》在日常办公场景中,我们经常需要从Word文档中提取图片,并将这些图片整理到PowerPoint幻灯片中,手动完成这一任务既耗时又容易出错,... 目录引言背景与需求解决方案概述代码解析代码核心逻辑说明总结引言在日常办公场景中,我们经常需要从 W

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

使用Spring Cache本地缓存示例代码

《使用SpringCache本地缓存示例代码》缓存是提高应用程序性能的重要手段,通过将频繁访问的数据存储在内存中,可以减少数据库访问次数,从而加速数据读取,:本文主要介绍使用SpringCac... 目录一、Spring Cache简介核心特点:二、基础配置1. 添加依赖2. 启用缓存3. 缓存配置方案方案

PostgreSQL简介及实战应用

《PostgreSQL简介及实战应用》PostgreSQL是一种功能强大的开源关系型数据库管理系统,以其稳定性、高性能、扩展性和复杂查询能力在众多项目中得到广泛应用,本文将从基础概念讲起,逐步深入到高... 目录前言1. PostgreSQL基础1.1 PostgreSQL简介1.2 基础语法1.3 数据库