使用networkx及matplotlib库实现社会网络分析及可视化

2024-01-03 12:20

本文主要是介绍使用networkx及matplotlib库实现社会网络分析及可视化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

公众号: HR和Python

4年人力资源从业经验,情报学硕士,主要内容涵盖python、数据分析和人力资源相关内容

networkx是python的一个第三方包,可以方便地调用各种图算法的计算。通过调用python画图包matplotlib能实现图的可视化。如果需要详细了解networks库可以参照官方文档:https://networkx.github.io/documentation/networkx-1.9/

1.安装库

安装networkx

  1. pip3 install networks

  1. The following command must be run outside of the IPython shell:

  2. $ pip install networks

  3. The Python package manager (pip) can only be used from outside of IPython.

  4. Please reissue the `pip` command in a separate terminal or command prompt.

  5. See the Python documentation for more information on how to install packages:

  6. https://docs.python.org/3/installing/

2.使用

创建一个没有节点也没有边的空图

在使用networks进行创建网络关系及网络分析之前,我们首先要先创建空图,在networks库中,提供三种类型的图:简单无向图graph,有向图digraph,可重复边的multi-graph。语法如下:

代码功能
G=nx.Graph()创建空的简单图
G=nx.DiGraph()创建空的简单有向图
G=nx.MultiGraph()创建空的多图
G=nx.MultiDiGraph()创建空的有向多图

比如我们创建名为G的无向图,具体代码如下:

  1. import networkx as nx

  2. G = nx.Graph()

创建节点(add_note)

这里的点可以是任意可区分的对象(hashable),比如数字,字符串,对象等。

用一个对象多为key来唯一区别一个点

  1. G.add_node('firstnode')

用一个列表来批量加入点

  1. G.add_nodes_from([1,2,3])

用一个图对象作为加入点

嵌入到其他图中这里D作为一个点的key,或者把一个图的所有点赋予另一个图

  • G.add_node(D)

  • G.add_nodes_from(D)这里返回D的所有点,赋予G

比如我们创建节点名为1和"python"的节点 具体代码如下:

  1. G.add_node(1)

  2. G.add_node("python")

  1. G.nodes()

  1. NodeView((1, 'python'))

删除节点(remove_node)

删除节点和创建节点用法几乎相同,比如我们删除节点'python',或者从列表[1,2,3]中删除节点

  1. G.remove_node("python")

  2. G.remove_nodes_from([1,2,3])

创建边

功能代码
节点1,2之间创建一条边G.add_edge(1,2)
用包含元组的列表批量创建边G.add_edges_from([(1,2),(2,3)]
将一个图的边赋予另一个图G.add_edges_from(H)
  1. G.add_edge(1,2)

  2. G.add_edges_from([(1,2),(2,3)])

删除边(remove_edge)

删除节点和创建节点用法几乎相同,比如我们删除节点1,2之间的边,或者批量删除节点(1,2),节点(3,4)之间的边

  1. G.remove_edge(1,2)

  2. G.remove_edges_from([(1,2),(2,3)])

访问

我们可以访问图中的节点和节点之间的边

  • 访问 G.nodes()

  • 访问节点 G.edges()

  1. G.add_edges_from([(1,2),(2,3)])

  2. G.nodes()

  3. G.edges()

  1. EdgeView([(1, 2), (2, 3)])

画网络图

将创建的图进行可视化呈现需要用到matplotlib.pyplot库

  1. import matplotlib.pyplot as plt

  2. nx.draw_networkx(G)

  3. plt.show()

设置节点颜色,大小

  1. plt.figure(figsize=(20,10))

  2. nx.draw_networkx(G,font_size = 12,font_color = "blue",node_size = 1000)

  3. nx.draw_networkx(G)

  4. plt.show()

实战

接下来我们用已经清洗好的数据集绘制《神雕侠侣》人物网络关系图

  1. import matplotlib.pyplot as plt

  2. import networkx as nx

  3. %matplotlib inline

  4. #显示中文

  5. plt.rcParams['font.sans-serif'] = ['Arial Unicode MS']

  6. fi =open("网络图2.txt","r", encoding='gbk')

  7. edges = []

  8. for line in fi.readlines():

  9. edges.append(line.replace('\n', '').replace('\t', ',').split(','))

  10. nodes = ['陆无双','程英','何沅君','陆展元', '李莫愁', '武三通','段智兴','武三娘',

  11. '武敦儒','武修文','黄蓉', '柯镇恶','郭靖', '黄药师','洪七公','梅超风',

  12. '欧阳锋','杨过', '杨康','穆念慈', '陈玄风', '鲁有脚', '丘处机', '赵志敬',

  13. '霍都', '达尔巴','王重阳','孙婆婆', '林朝英','耶律齐','耶律燕','完颜萍',

  14. '金轮法王','陆冠英','朱子柳','傻姑','周伯通','冯默风','潇湘子','尼摩星',

  15. '马光佐','尹克西','刘瑛','公孙绿萼','樊一翁','裘千尺','裘千仞','郭破虏',

  16. '郭襄','独孤求败','人厨子','圣因师太']

  17. g=nx.Graph()

  18. g.add_nodes_from(nodes)

  19. g.add_edges_from(edges)

  20. plt.figure(figsize=(20, 10))

  21. nx.draw_networkx(g, font_size=12, font_color='blue', node_size=1500)

  22. plt.savefig('ba.png')

  23. fi.close()


近期文章

代码不到40行的超燃动态排序图

如何使用Adaboost预测下一次营销活动的效果

Python网络爬虫与文本数据分析

日期数据操作第1期 datetime库

日期数据操作第2期 pandas库

Python语法快速入门

Python爬虫快速入门

文本数据分析文章汇总(2016-至今)

当文本分析遇到乱码(ง'⌣')ง怎么办?

Loughran&McDonald金融文本情感分析库

使用分析师报告中含有的情感信息预测上市公司股价变动

当pandas遇上数据类型问题

如何理解pandas中的transform函数

计算社会经济学

一行pandas代码生成哑变量

Python最被低估的库,用好了效率提升10倍!

公众号后台回复关键词“20191127”,即可获得课件资源,请在如果觉得有用,欢迎转发支持~如果您想了解如何对小说人物关系数据进行清洗,请关注我们下期内容

这篇关于使用networkx及matplotlib库实现社会网络分析及可视化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/565673

相关文章

分布式锁在Spring Boot应用中的实现过程

《分布式锁在SpringBoot应用中的实现过程》文章介绍在SpringBoot中通过自定义Lock注解、LockAspect切面和RedisLockUtils工具类实现分布式锁,确保多实例并发操作... 目录Lock注解LockASPect切面RedisLockUtils工具类总结在现代微服务架构中,分布

Java使用Thumbnailator库实现图片处理与压缩功能

《Java使用Thumbnailator库实现图片处理与压缩功能》Thumbnailator是高性能Java图像处理库,支持缩放、旋转、水印添加、裁剪及格式转换,提供易用API和性能优化,适合Web应... 目录1. 图片处理库Thumbnailator介绍2. 基本和指定大小图片缩放功能2.1 图片缩放的

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do

Android Paging 分页加载库使用实践

《AndroidPaging分页加载库使用实践》AndroidPaging库是Jetpack组件的一部分,它提供了一套完整的解决方案来处理大型数据集的分页加载,本文将深入探讨Paging库... 目录前言一、Paging 库概述二、Paging 3 核心组件1. PagingSource2. Pager3.

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统