植株计数-密度估计-从高分辨率RGB图像中快速实现高通量植物计数

本文主要是介绍植株计数-密度估计-从高分辨率RGB图像中快速实现高通量植物计数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

TasselNetv2+

  • TasselNetv2+
    • 亮点
    • 安装
    • 准备数据
    • 推断
    • 训练
    • 使用自己的数据集
    • 引用

TasselNetv2+

该存储库包含TasselNetv2+用于植物计数的官方实现,详见论文:

TasselNetv2+: A Fast Implementation for High-Throughput Plant Counting from High-Resolution RGB Imagery

《植物科学前沿》, 2020

郝路 和 曹志国

亮点

  • 高效: TasselNetv2+的运行速度比TasselNetv2快一个数量级,在单个GTX 1070上在1980×1080的图像分辨率上约为30fps;
  • 有效: 与其对应的TasselNetv2相比,它重新训练了相同水平的计数精度;
  • 易于使用: 预训练的植物计数模型包含在该存储库中。

在这里插入图片描述

安装

代码已在Python 3.7.4和PyTorch 1.2.0上进行了测试。请按照官方说明配置您的环境。查看requirements.txt中的其他所需包。

准备数据

小麦穗计数

  1. 从Google Drive(2.5 GB)下载小麦穗计数(WEC)数据集。我已重新组织了数据,该数据集的归属权属于此存储库。
  2. 解压缩数据集并将其移动到./data文件夹中,路径结构应如下所示:
$./data/wheat_ears_counting_dataset
├──── train
│    ├──── images
│    └──── labels
├──── val
│    ├──── images
│    └──── labels

玉米雄穗计数

  1. 从Google Drive(1.8 GB)下载玉米雄穗计数(MTC)数据集。
  2. 解压缩数据集并将其移动到./data文件夹中,路径结构应如下所示:
$./data/maize_counting_dataset
├──── trainval
│    ├──── images
│    └──── labels
├──── test
│    ├──── images
│    └──── labels

高粱穗计数

  1. 从Google Drive(152 MB)下载高粱穗计数(SHC)数据集。该数据集的归属权属于此存储库。我只使用了具有点状注释的两个子集。
  2. 解压缩数据集并将其移动到./data文件夹中,路径结构应如下所示:
$./data/sorghum_head_counting_dataset
├──── original
│    ├──── dataset1
│    └──── dataset2
├──── labeled
│    ├──── dataset1
│    └──── dataset2

推断

运行以下命令以在WEC/MTC/SHC数据集上重现我们在TasselNetv2+上的结果:

sh config/hl_wec_eval.shsh config/hl_mtc_eval.shsh config/hl_shc_eval.sh
  • 结果保存在路径./results/$dataset/$exp/$epoch中。
epoch: 470, mae: 5.50, mse: 10.03, relerr: 32.37%, relerr10: 14.67%, r2: 0.8778
epoch: 480, mae: 5.52, mse: 10.09, relerr: 33.53%, relerr10: 14.71%, r2: 0.8753
epoch: 490, mae: 5.96, mse: 10.62, relerr: 30.87%, relerr10: 16.10%, r2: 0.8741
epoch: 500, mae: 5.58, mse: 10.22, relerr: 29.42%, relerr10: 15.37%, r2: 0.8765
best mae: 5.09, best mse: 9.06, best_relerr: 33.81, best_relerr10: 14.09, best_r2: 0.8880
overall best mae: 5.09, overall best mse: 8.95, overall best_relerr: 28.17, overall best_relerr10: 14.09, overall best_r2: 0.9062

训练

运行以下命令以在WEC/MTC/SHC数据集上训练TasselNetv2+:

sh config/hl_wec_train.shsh config/hl_mtc_train.shsh config/hl_shc_train.sh

在这里插入图片描述

使用自己的数据集

要在自己的数据集上使用此框架,您可能需要:

  1. 使用点状注释标记您的数据。我推荐使用VGG Image Annotator;
  2. 生成像gen_trainval_list.py示例中的训练/验证列表;
  3. 按照hldataset.py中的示例代码编写您的数据加载器;
  4. 计算训练集上RGB的均值和标准差;
  5. hltrainval.py中的dataset_list中创建一个新条目;
  6. 按照./config中的示例创建一个新的your_dataset.sh,并根据需要修改超参数(例如,批量大小,裁剪大小)。
  7. 训练和测试您的模型。玩得开心:)

引用

如果您发现这项工作或代码对您的研究有用,请引用:

@article{lu2020tasselnetv2plus,title={TasselNetV2+: A fast implementation for high-throughput plant counting from high-resolution RGB imagery},author={Lu, Hao and Cao, Zhiguo},journal={Frontiers in Plant Science},year={2020}
}@article{xiong2019tasselnetv2,title={TasselNetv2: in-field counting of wheat spikes with context-augmented local regression networks},author={Xiong, Haipeng and Cao, Zhiguo and Lu, Hao and Madec, Simon and Liu, Liang and Shen, Chunhua},journal={Plant Methods},volume={15},number={1},pages={150},year={2019},publisher={Springer}
}

这篇关于植株计数-密度估计-从高分辨率RGB图像中快速实现高通量植物计数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/565535

相关文章

Python使用python-can实现合并BLF文件

《Python使用python-can实现合并BLF文件》python-can库是Python生态中专注于CAN总线通信与数据处理的强大工具,本文将使用python-can为BLF文件合并提供高效灵活... 目录一、python-can 库:CAN 数据处理的利器二、BLF 文件合并核心代码解析1. 基础合

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

golang版本升级如何实现

《golang版本升级如何实现》:本文主要介绍golang版本升级如何实现问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录golanwww.chinasem.cng版本升级linux上golang版本升级删除golang旧版本安装golang最新版本总结gola

SpringBoot中SM2公钥加密、私钥解密的实现示例详解

《SpringBoot中SM2公钥加密、私钥解密的实现示例详解》本文介绍了如何在SpringBoot项目中实现SM2公钥加密和私钥解密的功能,通过使用Hutool库和BouncyCastle依赖,简化... 目录一、前言1、加密信息(示例)2、加密结果(示例)二、实现代码1、yml文件配置2、创建SM2工具

Mysql实现范围分区表(新增、删除、重组、查看)

《Mysql实现范围分区表(新增、删除、重组、查看)》MySQL分区表的四种类型(范围、哈希、列表、键值),主要介绍了范围分区的创建、查询、添加、删除及重组织操作,具有一定的参考价值,感兴趣的可以了解... 目录一、mysql分区表分类二、范围分区(Range Partitioning1、新建分区表:2、分

MySQL 定时新增分区的实现示例

《MySQL定时新增分区的实现示例》本文主要介绍了通过存储过程和定时任务实现MySQL分区的自动创建,解决大数据量下手动维护的繁琐问题,具有一定的参考价值,感兴趣的可以了解一下... mysql创建好分区之后,有时候会需要自动创建分区。比如,一些表数据量非常大,有些数据是热点数据,按照日期分区MululbU

MySQL中查找重复值的实现

《MySQL中查找重复值的实现》查找重复值是一项常见需求,比如在数据清理、数据分析、数据质量检查等场景下,我们常常需要找出表中某列或多列的重复值,具有一定的参考价值,感兴趣的可以了解一下... 目录技术背景实现步骤方法一:使用GROUP BY和HAVING子句方法二:仅返回重复值方法三:返回完整记录方法四:

IDEA中新建/切换Git分支的实现步骤

《IDEA中新建/切换Git分支的实现步骤》本文主要介绍了IDEA中新建/切换Git分支的实现步骤,通过菜单创建新分支并选择是否切换,创建后在Git详情或右键Checkout中切换分支,感兴趣的可以了... 前提:项目已被Git托管1、点击上方栏Git->NewBrancjsh...2、输入新的分支的

Python实现对阿里云OSS对象存储的操作详解

《Python实现对阿里云OSS对象存储的操作详解》这篇文章主要为大家详细介绍了Python实现对阿里云OSS对象存储的操作相关知识,包括连接,上传,下载,列举等功能,感兴趣的小伙伴可以了解下... 目录一、直接使用代码二、详细使用1. 环境准备2. 初始化配置3. bucket配置创建4. 文件上传到os

关于集合与数组转换实现方法

《关于集合与数组转换实现方法》:本文主要介绍关于集合与数组转换实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、Arrays.asList()1.1、方法作用1.2、内部实现1.3、修改元素的影响1.4、注意事项2、list.toArray()2.1、方