【前缀和】【分类讨论】2983:使用封装类解决回文串重新排列查询

本文主要是介绍【前缀和】【分类讨论】2983:使用封装类解决回文串重新排列查询,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者推荐

【动态规划】【字符串】C++算法:正则表达式匹配

本题同解:

【前缀和】【分类讨论】【二分查找】2983:回文串重新排列查询

本文涉及的基础知识点

C++算法:前缀和、前缀乘积、前缀异或的原理、源码及测试用例 包括课程视频
二分查找算法合集

回文串重新排列查询

给你一个长度为 偶数 n ,下标从 0 开始的字符串 s 。
同时给你一个下标从 0 开始的二维整数数组 queries ,其中 queries[i] = [ai, bi, ci, di] 。
对于每个查询 i ,你需要执行以下操作:
将下标在范围 0 <= ai <= bi < n / 2 内的 子字符串 s[ai:bi] 中的字符重新排列。
将下标在范围 n / 2 <= ci <= di < n 内的 子字符串 s[ci:di] 中的字符重新排列。
对于每个查询,你的任务是判断执行操作后能否让 s 变成一个 回文串 。
每个查询与其他查询都是 独立的 。
请你返回一个下标从 0 开始的数组 answer ,如果第 i 个查询执行操作后,可以将 s 变为一个回文串,那么 answer[i] = true,否则为 false 。
子字符串 指的是一个字符串中一段连续的字符序列。
s[x:y] 表示 s 中从下标 x 到 y 且两个端点 都包含 的子字符串。
示例 1:
输入:s = “abcabc”, queries = [[1,1,3,5],[0,2,5,5]]
输出:[true,true]
解释:这个例子中,有 2 个查询:
第一个查询:

  • a0 = 1, b0 = 1, c0 = 3, d0 = 5
  • 你可以重新排列 s[1:1] => abcabc 和 s[3:5] => abcabc 。
  • 为了让 s 变为回文串,s[3:5] 可以重新排列得到 => abccba 。
  • 现在 s 是一个回文串。所以 answer[0] = true 。
    第二个查询:
  • a1 = 0, b1 = 2, c1 = 5, d1 = 5.
  • 你可以重新排列 s[0:2] => abcabc 和 s[5:5] => abcabc 。
  • 为了让 s 变为回文串,s[0:2] 可以重新排列得到 => cbaabc 。
  • 现在 s 是一个回文串,所以 answer[1] = true 。
    示例 2:

输入:s = “abbcdecbba”, queries = [[0,2,7,9]]
输出:[false]
解释:这个示例中,只有一个查询。
a0 = 0, b0 = 2, c0 = 7, d0 = 9.
你可以重新排列 s[0:2] => abbcdecbba 和 s[7:9] => abbcdecbba 。
无法通过重新排列这些子字符串使 s 变为一个回文串,因为 s[3:6] 不是一个回文串。
所以 answer[0] = false 。
示例 3:
输入:s = “acbcab”, queries = [[1,2,4,5]]
输出:[true]
解释:这个示例中,只有一个查询。
a0 = 1, b0 = 2, c0 = 4, d0 = 5.
你可以重新排列 s[1:2] => acbcab 和 s[4:5] => acbcab 。
为了让 s 变为回文串,s[1:2] 可以重新排列得到 => abccab 。
然后 s[4:5] 重新排列得到 abccba 。
现在 s 是一个回文串,所以 answer[0] = true 。
提示:
2 <= n == s.length <= 105
1 <= queries.length <= 105
queries[i].length == 4
ai == queries[i][0], bi == queries[i][1]
ci == queries[i][2], di == queries[i][3]
0 <= ai <= bi < n / 2
n / 2 <= ci <= di < n
n 是一个偶数。
s 只包含小写英文字母。

分析

封装类

线段关心

class C2Line
{
public:C2Line(int left1, int right1, int left2, int right2):m_iLeft1(left1), m_iRight1(right1), m_iLeft2(left2), m_iRight2(right2),m_iCrossLeft(max(left1,left2)),m_iCrossRight(min(right1,right2)),m_iUnionLeft(min(left1,left2)),m_iUnionRight(max(right1, right2)), m_bCross(m_iCrossRight >= m_iCrossLeft)		{}	tuple<int, int, int, int> NotCross()const{auto[a, b] = NotCross(m_iLeft1, m_iRight1);auto [c, d] = NotCross(m_iLeft2, m_iRight2);return std::make_tuple(a, b, c, d);}bool IsInclude()const{bool b1 = (m_iLeft1 == m_iUnionLeft) && (m_iRight1 == m_iUnionRight);bool b2 = (m_iLeft2 == m_iUnionLeft) && (m_iRight2 == m_iUnionRight);return b1 || b2;}const int m_iLeft1, m_iRight1, m_iLeft2, m_iRight2;const int m_iCrossLeft, m_iCrossRight, m_iUnionLeft, m_iUnionRight;const bool m_bCross;
protected:tuple<int, int> NotCross(int left, int right)const{if (left == m_iCrossLeft){return std::make_tuple(m_iCrossRight + 1, right);}return std::make_tuple(left,m_iCrossLeft-1);}	
};

前缀和

template<class T = long long >
class CPreSum
{
public:CPreSum(const vector<int>& nums){m_data.push_back(0);for (int i = 0; i < nums.size(); i++){m_data.push_back(m_data[i] + nums[i]);}}template<class _PR>CPreSum(int iSize, _PR pr){m_data.push_back(0);for (int i = 0; i < iSize; i++){m_data.push_back(m_data[i] + pr(i));}}T Sum(int left, int rightExclu)const{return m_data[rightExclu] - m_data[left];}
protected:vector<T> m_data;
};

核心代码

class Solution {
public:vector<bool> canMakePalindromeQueries(string s, vector<vector<int>>& queries) {const int n2 = s.length() / 2;CPreSum<int>* preSumLeft[26],* preSumRight[26];for (int i = 0; i < 26; i++){preSumLeft[i] = new CPreSum<int>(n2, [&](int index) {return s[index] == 'a' + i; });preSumRight[i] = new CPreSum<int>(n2, [&](int index) {return s[n2*2-1-index] == 'a' + i; });}CPreSum<int> preSumNotSame(n2, [&](int index) {return s[index] != s[n2 * 2 - 1 - index]; });auto IsSame = [&](int a, int b){for (int i = 0; i < 26; i++){if (preSumLeft[i]->Sum(a,b+1) != preSumRight[i]->Sum(a,b+1)){return false;}}return true;};		vector<bool> vRet;for (const auto& v : queries){const int a = v[0], b = v[1], c = s.length() - 1 - v[3], d = s.length() - 1 - v[2];C2Line line2(a, b,  c,  d);auto Has = [&](const int a, const int b,const int c,const int d,CPreSum<int>* pPreSum, CPreSum<int>* pPreSumOther){//[a,b]可以任意调整顺序的范围,[c,d]是非交叉范围return pPreSum->Sum(a,b+1) - pPreSumOther->Sum(c,d+1) >= 0;};if (!line2.m_bCross){//两者没有交叉const int iNotSameCount = preSumNotSame.Sum(a, b+1) + preSumNotSame.Sum(c,d+1);vRet.emplace_back(IsSame(a, b) && IsSame(c, d) && (iNotSameCount == preSumNotSame.Sum(0,n2)));}else{if (line2.IsInclude()){vRet.emplace_back(IsSame(line2.m_iUnionLeft, line2.m_iUnionRight) && (preSumNotSame.Sum(line2.m_iUnionLeft, line2.m_iUnionRight +1) == preSumNotSame.Sum(0,n2)));continue;}bool bHas = true;auto [a1, b1, c1, d1] = line2.NotCross();for (int i = 0; i < 26; i++){bHas &= Has(a,b,a1,b1, preSumLeft[i], preSumRight[i]);bHas &= Has(c, d,c1,d1, preSumRight[i], preSumLeft[i]);}vRet.emplace_back(bHas&& IsSame(line2.m_iUnionLeft, line2.m_iUnionRight) && (preSumNotSame.Sum(line2.m_iUnionLeft, line2.m_iUnionRight + 1) == preSumNotSame.Sum(0, n2)));}}return vRet;}
};

测试用例

template
void Assert(const T& t1, const T& t2)
{
assert(t1 == t2);
}

template
void Assert(const vector& v1, const vector& v2)
{
if (v1.size() != v2.size())
{
assert(false);
return;
}
for (int i = 0; i < v1.size(); i++)
{
Assert(v1[i], v2[i]);
}
}

int main()
{
string s, p;
vector<vector>queries;

{Solution sln;s = "fxdqcfqdxc", queries = { {1,1,7,8},{1,1,5,9},{2,4,8,8},{0,4,6,8},{2,3,7,8},{2,4,5,9},{1,4,9,9} };auto res = sln.canMakePalindromeQueries(s, queries);Assert(vector<bool>{false, true, false, true, false, true, false}, res);
}
{Solution sln;s = "dbaabd", queries = { {0, 1, 5, 5}, { 1,2,4,5 } };auto res = sln.canMakePalindromeQueries(s, queries);Assert(vector<bool>{true,true}, res);
}
{Solution sln;s = "ceddceddcc", queries = { {0,1,6,8} };auto res = sln.canMakePalindromeQueries(s, queries);Assert(vector<bool>{false}, res);
}
{Solution sln;s = "acbcab", queries = { {1,2,4,5} };auto res = sln.canMakePalindromeQueries(s, queries);Assert(vector<bool>{true}, res);
}
{Solution sln;s = "abbcdecbba", queries = { {0,2,7,9} };auto res = sln.canMakePalindromeQueries(s, queries);Assert(vector<bool>{false}, res);
}
{Solution sln;s = "abcabc", queries = { {1,1,3,5},{0,2,5,5} };auto res = sln.canMakePalindromeQueries(s, queries);Assert(vector<bool>{true, true}, res);
}{Solution sln;s = "odaxusaweuasuoeudxwa", queries = { {0,5,10,14} };auto res = sln.canMakePalindromeQueries(s, queries);Assert(vector<bool>{false}, res);
}

}

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快

速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关

下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 **C+

+17**
如无特殊说明,本算法用**C++**实现。

这篇关于【前缀和】【分类讨论】2983:使用封装类解决回文串重新排列查询的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/565123

相关文章

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

Android Paging 分页加载库使用实践

《AndroidPaging分页加载库使用实践》AndroidPaging库是Jetpack组件的一部分,它提供了一套完整的解决方案来处理大型数据集的分页加载,本文将深入探讨Paging库... 目录前言一、Paging 库概述二、Paging 3 核心组件1. PagingSource2. Pager3.

解决RocketMQ的幂等性问题

《解决RocketMQ的幂等性问题》重复消费因调用链路长、消息发送超时或消费者故障导致,通过生产者消息查询、Redis缓存及消费者唯一主键可以确保幂等性,避免重复处理,本文主要介绍了解决RocketM... 目录造成重复消费的原因解决方法生产者端消费者端代码实现造成重复消费的原因当系统的调用链路比较长的时

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

解密SQL查询语句执行的过程

《解密SQL查询语句执行的过程》文章讲解了SQL语句的执行流程,涵盖解析、优化、执行三个核心阶段,并介绍执行计划查看方法EXPLAIN,同时提出性能优化技巧如合理使用索引、避免SELECT*、JOIN... 目录1. SQL语句的基本结构2. SQL语句的执行过程3. SQL语句的执行计划4. 常见的性能优

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

SpringBoot监控API请求耗时的6中解决解决方案

《SpringBoot监控API请求耗时的6中解决解决方案》本文介绍SpringBoot中记录API请求耗时的6种方案,包括手动埋点、AOP切面、拦截器、Filter、事件监听、Micrometer+... 目录1. 简介2.实战案例2.1 手动记录2.2 自定义AOP记录2.3 拦截器技术2.4 使用Fi

C++11右值引用与Lambda表达式的使用

《C++11右值引用与Lambda表达式的使用》C++11引入右值引用,实现移动语义提升性能,支持资源转移与完美转发;同时引入Lambda表达式,简化匿名函数定义,通过捕获列表和参数列表灵活处理变量... 目录C++11新特性右值引用和移动语义左值 / 右值常见的左值和右值移动语义移动构造函数移动复制运算符