Tracking数据集及评价指标

2024-01-03 04:20

本文主要是介绍Tracking数据集及评价指标,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、单目标跟踪数据集

目前比较常用的单目标跟踪数据集有OTB和VOT。

1、OTB数据集(Object Tracking Benchmark)
1)简介

用的最广泛的是OTB-50和OTB-100,里面涉及到灰度图像和彩色图像,也涉及到目标跟踪的11个属性,包括光照变化、尺度变化、遮挡、形变、运动模糊、快速运动、平面内旋转、平面外旋转、出视野、背景干扰、低像素。
每个图像序列都对应着两个或多个属性,每个序列都对应着一个txt文件,记录着人工标注的目标中心位置和目标的大小。
2)评价指标
两个衡量目标跟踪精准度的基本参数是Precision Plot和Success Plot
precesion plot(精度测算)主要指的是预测位置中心点与benchmark中标注的中心位置间的欧式距离,是以像素为单位进行的计算。
success plot(成功率测算)主要指的是预测目标所在benchmark的重合程度。

2、VOT数据集(Visual Object Tracking)
1)简介

VOT数据集是基于每年一次的VOT比赛的,每年都会有新的数据集产生,当然其中一部分图像序列是和OTB重合的,但是总的来说VOT数据集略难于OTB数据集,一般在这两个数据集上跑的效果都好,才算真的好,如果只在一个数据集上效果好,那只能说明这个算法的泛化能力还不够。
2)评价指标
VOT最终选取了精度和鲁棒性两个指标,因为在图像跟踪的若干(16个)评价标准中,这二者的相关性最弱。
VOT中使用的评价标准(EAO和EFO)
EAO(Expect Average Overlap Rate),用于评价性能。VOT中的使用标准A_R图
A:重叠率,就是跟踪成功状态下的平均重叠率。
R:鲁棒性,鲁棒性数值是失败总次数。
在这里插入图片描述
EFO(Equivalent Filter Operations),用于评价速度。
因为性能的比较常常因为计算机性能不同而不够直观,EFO评价标准考虑到了这一点,使用600×600的图像,做30*30窗口的滤波,来得到机器的性能。然后使用跟踪算法处理每帧图像的评价时间除以以上滤波操作的时间,得到了一个归一化的性能参数,就是EFO,是VOT14提出的标准,一直沿用到现在。

二、多目标跟踪数据集
PETS2009 : An old dataset.
KITTI-Tracking : Multi-person or multi-car tracking dataset.
MOT dataset : A dataset for multi-person detection and tracking, mostly used.
UA-DETRAC : A dataset for multi-car detection and tracking.
AVSS2018 Challenge : AVSS2018 Challenge based on UA-DETRAC is opened!
DukeMTMC : A dataset for multi-camera multi-person tracking.
PoseTrack: A dataset for multi-person pose tracking.
NVIDIA AI CITY Challenge: Challenges including “Traffic Flow Analysis”, “Anomaly Detection” and “Multi-sensor Vehicle Detection and Reidentification”, you may find some insteresting codes on their Github repos
Vis Drone: Tracking videos captured by drone-mounted cameras.
JTA Dataset: A huge dataset for pedestrian pose estimation and tracking in urban scenarios created by exploiting the highly photorealistic video game Grand Theft Auto V developed by Rockstar North.
Baidu Trajectory Interesting dataset for trajectory prediction for Autonomous drive, wait to be opened.
Path Track A new dataset with many scenes.
Recall(↑):正确匹配的检测目标数/ground truth给出的目标数
Precision(↑):正确匹配的检测目标数/检测出的目标数
MT(↑):目标的大部分被跟踪到的轨迹占比(大于百分之八十)
ML(↓):目标的大部分跟丢的轨迹占比(小于百分之二十)
PT(↓):目标部分跟踪到的轨迹占比(1 - MT – ML)
FM(↓):真实轨迹被打断的次数
IDS(↓):一条跟踪轨迹改变目标标号的次数
MOTA(↑):结合了丢失目标,虚警率,标号转换之后的准确性
MOTP(↑)::所有跟踪目标的平均边框重叠率

这篇关于Tracking数据集及评价指标的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/564555

相关文章

C#监听txt文档获取新数据方式

《C#监听txt文档获取新数据方式》文章介绍通过监听txt文件获取最新数据,并实现开机自启动、禁用窗口关闭按钮、阻止Ctrl+C中断及防止程序退出等功能,代码整合于主函数中,供参考学习... 目录前言一、监听txt文档增加数据二、其他功能1. 设置开机自启动2. 禁止控制台窗口关闭按钮3. 阻止Ctrl +

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

C#解析JSON数据全攻略指南

《C#解析JSON数据全攻略指南》这篇文章主要为大家详细介绍了使用C#解析JSON数据全攻略指南,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、为什么jsON是C#开发必修课?二、四步搞定网络JSON数据1. 获取数据 - HttpClient最佳实践2. 动态解析 - 快速

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

解读GC日志中的各项指标用法

《解读GC日志中的各项指标用法》:本文主要介绍GC日志中的各项指标用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、基础 GC 日志格式(以 G1 为例)1. Minor GC 日志2. Full GC 日志二、关键指标解析1. GC 类型与触发原因2. 堆

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查