Mnist手写体数字数据集介绍与在Pytorch中使用

2024-01-02 23:20

本文主要是介绍Mnist手写体数字数据集介绍与在Pytorch中使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.介绍

        MNIST(Modified National Institute of Standards and Technology)数据集是一个广泛用于机器学习和计算机视觉研究的常用数据集之一。它由手写数字图像组成,包括0到9的数字,每张图像都是28x28像素的灰度图像,图片和标签均采用二进制编码,共70000张图像,其中包括60000张训练集和10000测试集。每张图像都对应一个one-hot标签,表示图像中显示的是哪个数字

        这个数据集因其相对较小的规模和简单的图像内容也成为了许多机器学习入门教程和示例的标准数据集,因为它的简单性和普遍性,使得学习者能够快速开始构建和训练模型,从而更好地理解机器学习的基本概念和流程,可以说它就是计算机视觉的“Hello World”。

        官网地址https://yann.lecun.com/exdb/mnist/

2.在Pytorch中使用Mnist

        Pytorch的torchvision中的datasets自带下载与读取Mnist数据集的函数,可以很方便的使用

1.导入所需库

import torch
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt

 2.下载Mnist数据集

# 定义数据转换
transform = transforms.Compose([transforms.ToTensor()  # 将图像转换为 PyTorch 张量
])# 下载并加载 MNIST 训练和测试数据集
train_dataset = datasets.MNIST(root='./dataset', train=True, download=True, transform=transform)
test_dataset = datasets.MNIST(root='./dataset', train=False, download=True, transform=transform)
  • root为数据集保存的位置
  • train为是否为训练集
  • download为是否自动下载该数据集,如果数据集已经下载过,即使设置为True也没关系,他会自动检测
  • transform为数据转换的操作,ToTensor()是必须的

        这里如果不使用科学上网可能无法下载,或者下载有点慢。而直接去官网的话又需要登陆

                        

        这里另外一个介绍使用迅雷下载数据集的方法,不止适用于这个数据集,我们复制好链接后打开迅雷就会自动弹出下载界面

数据集文件名下载地址
训练集图像train-images-idx3-ubyte.gzhttp://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz
训练集标签train-labels-idx1-ubyte.gzhttp://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz

测试集图像

t10k-images-idx3-ubyte.gzhttp://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz
测试集标签t10k-labels-idx1-ubyte.gzhttp://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz

                        

         没有弹出的话就把链接复制到搜索框

        下载好后,在root参数指定的位置下新建一个MNIST文件夹,再在MNIST中新建一个raw文件夹,对于其他数据集不知道如何建文件夹可以先尝试自动下载,他会建好文件夹,然后把下载好的四个压缩包直接放进去就可以

        

接着我们再运行一次上面的代码,他会检测到数据集已存在,然后自动解压缩,这样就完成了

 3.读取数据集与展示

        使用dataloader将数据分为一个个批量大小的数据,生成一个迭代器,shuffle为是否洗牌

# 创建数据加载器以批量加载数据
batch_size = 128
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
# 输出训练集和测试集的长度
train_length = len(train_dataset)
test_length = len(test_dataset)
print(f"训练集的长度:{train_length}")
print(f"测试集的长度:{test_length}")

# 创建一个字典以存储类别索引及其对应的图像
images_by_class = {}# 填充字典,每个类别只保留几张图像
num_images_per_class = 5# 循环遍历训练集中的每个图像和对应的标签
for image, label in train_dataset:# 如果当前标签不在字典中,为该标签创建一个空列表if label not in images_by_class:images_by_class[label] = []# 如果当前类别的图像数量未达到指定的数量(num_images_per_class),则将当前图像添加到对应类别的列表中if len(images_by_class[label]) < num_images_per_class:images_by_class[label].append(image)# 显示每个类别的图像
for label, images in images_by_class.items():print(f"Class {label}:")# 创建一个新的图像窗口,并设置大小plt.figure(figsize=(num_images_per_class * 2, 2))# 遍历每个类别的图像列表并显示for i in range(num_images_per_class):plt.subplot(1, num_images_per_class, i + 1)# 显示图像,并使用灰度颜色图plt.imshow(images[i].squeeze(), cmap='gray')plt.axis('off')  # 不显示坐标轴plt.show()  # 显示图像

        然后使用for循环就可以一次读取一个批量的数据,进行后面的一系列任务,这里只是展示一个批次数据

# 读取一个批次的数据
for i, (images, labels) in enumerate(train_loader):print("第{}批次".format(i+1))print(images.shape)  # 图像批次的形状 (batch_size, 通道数, 高度, 宽度)print(labels.shape)  # 标签批次的形状 (batch_size,)break   

这篇关于Mnist手写体数字数据集介绍与在Pytorch中使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/563943

相关文章

python使用库爬取m3u8文件的示例

《python使用库爬取m3u8文件的示例》本文主要介绍了python使用库爬取m3u8文件的示例,可以使用requests、m3u8、ffmpeg等库,实现获取、解析、下载视频片段并合并等步骤,具有... 目录一、准备工作二、获取m3u8文件内容三、解析m3u8文件四、下载视频片段五、合并视频片段六、错误

gitlab安装及邮箱配置和常用使用方式

《gitlab安装及邮箱配置和常用使用方式》:本文主要介绍gitlab安装及邮箱配置和常用使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1.安装GitLab2.配置GitLab邮件服务3.GitLab的账号注册邮箱验证及其分组4.gitlab分支和标签的

SpringBoot3应用中集成和使用Spring Retry的实践记录

《SpringBoot3应用中集成和使用SpringRetry的实践记录》SpringRetry为SpringBoot3提供重试机制,支持注解和编程式两种方式,可配置重试策略与监听器,适用于临时性故... 目录1. 简介2. 环境准备3. 使用方式3.1 注解方式 基础使用自定义重试策略失败恢复机制注意事项

nginx启动命令和默认配置文件的使用

《nginx启动命令和默认配置文件的使用》:本文主要介绍nginx启动命令和默认配置文件的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录常见命令nginx.conf配置文件location匹配规则图片服务器总结常见命令# 默认配置文件启动./nginx

在Windows上使用qemu安装ubuntu24.04服务器的详细指南

《在Windows上使用qemu安装ubuntu24.04服务器的详细指南》本文介绍了在Windows上使用QEMU安装Ubuntu24.04的全流程:安装QEMU、准备ISO镜像、创建虚拟磁盘、配置... 目录1. 安装QEMU环境2. 准备Ubuntu 24.04镜像3. 启动QEMU安装Ubuntu4

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

Windows下C++使用SQLitede的操作过程

《Windows下C++使用SQLitede的操作过程》本文介绍了Windows下C++使用SQLite的安装配置、CppSQLite库封装优势、核心功能(如数据库连接、事务管理)、跨平台支持及性能优... 目录Windows下C++使用SQLite1、安装2、代码示例CppSQLite:C++轻松操作SQ

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.