Kaggle--泰坦尼克号失踪者生死情况预测源码(附Titanic数据集)

本文主要是介绍Kaggle--泰坦尼克号失踪者生死情况预测源码(附Titanic数据集),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

数据可视化分析

import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as nptitanic=pd.read_csv('train.csv')
#print(titanic.head())
#设置某一列为索引
#print(titanic.set_index('PassengerId').head())# =============================================================================
# #绘制一个展示男女乘客比例的扇形图
# #sum the instances of males and females
# males=(titanic['Sex']=='male').sum()
# females=(titanic['Sex']=='female').sum()
# #put them into a list called proportions
# proportions=[males,females]
# #Create a pie chart
# plt.pie(
# #        using proportions
#         proportions,
# #        with the labels being officer names
#         labels=['Males','Females'],
# #        with no shadows
#         shadow=False,
# #        with colors
#         colors=['blue','red'],
#         explode=(0.15,0),
#         startangle=90,
#         autopct='%1.1f%%'
#         )
# plt.axis('equal')
# plt.title("Sex Proportion")
# plt.tight_layout()
# plt.show()
# =============================================================================# =============================================================================
# #绘制一个展示船票Fare,与乘客年龄和性别的散点图
# #creates the plot using
# lm=sns.lmplot(x='Age',y='Fare',data=titanic,hue='Survived',fit_reg=False)
# #set title
# lm.set(title='Fare x Age')
# #get the axes object and tweak it
# axes=lm.axes
# axes[0,0].set_ylim(-5,)
# axes[0,0].set_xlim(-5,85)
# =============================================================================# =============================================================================
# #绘制一个展示船票价格的直方图
# #sort the values from the top to least value and slice the first 5 items
# df=titanic.Fare.sort_values(ascending=False)
# #create bins interval using numpy
# binsVal=np.arange(0,600,10)
# #create the plot
# plt.hist(df,bins=binsVal)
# plt.xlabel('Fare')
# plt.ylabel('Frequency')
# plt.title('Fare Payed Histrogram')
# plt.show()
# =============================================================================#哪个性别的年龄的平均值更大
#print(titanic.groupby('Sex').Age.mean())
#打印出不同性别的年龄的描述性统计信息
#print(titanic.groupby('Sex').Age.describe())
#print(titanic.groupby(['Sex','Survived']).Fare.describe())
#先对Survived再Fare进行排序
#a=titanic.sort_values(['Survived','Fare'],ascending=False)
#print(a)
#选取名字以字母A开头的数据
#b=titanic[titanic.Name.str.startswith('A')]
#print(b)
#找到其中三个人的存活情况
#c=titanic.loc[titanic.Name.isin(['Youseff, Mr. Gerious','Saad, Mr. Amin','Yousif, Mr. Wazli'])\
#              ,['Name','Survived']]
#print(c)
# =============================================================================
# ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', periods=1000))
# ts = ts.cumsum()
# ts.plot()
# plt.show()
# 
# df = pd.DataFrame(np.random.randn(1000, 4),index=ts.index,columns=['A', 'B', 'C', 'D'])
# df=df.cumsum()
# plt.figure()
# df.plot()
# plt.legend(loc='best')
# plt.show()
# =============================================================================
#对应每一个location,一共有多少数据值缺失
#print(titanic.isnull().sum())
#对应每一个location,一共有多少数据值完整
#print(titanic.shape[0]-titanic.isnull().sum())
#查看每个列的数据类型
#print(titanic.info())
#print(titanic.dtypes)

主程序
# -*- coding: utf-8 -*-
"""
Created on Tue Apr 10 17:21:16 2018@author: CSH
"""import pandas as pd
titanic=pd.read_csv("train.csv")
#print(titanic.describe())titanic["Age"]=titanic["Age"].fillna(titanic["Age"].median())
#print(titanic.describe())#print(titanic["Sex"].unique())
titanic.loc[titanic["Sex"]=="male","Sex"]=0
titanic.loc[titanic["Sex"]=="female","Sex"]=1#print(titanic["Embarked"].value_counts())
titanic["Embarked"]=titanic["Embarked"].fillna("S")
titanic.loc[titanic["Embarked"]=="S","Embarked"]=0
titanic.loc[titanic["Embarked"]=="C","Embarked"]=1
titanic.loc[titanic["Embarked"]=="Q","Embarked"]=2
#线性回归
# =============================================================================
# from sklearn.linear_model import LinearRegression
# from sklearn.cross_validation import KFold
# predictors=["Pclass","Sex","Age","SibSp","Parch","Fare","Embarked"]
# alg=LinearRegression()
# kf=KFold(titanic.shape[0],n_folds=3,random_state=1)
# predictions=[]
# for train,test in kf:
#     train_predictors=(titanic[predictors].iloc[train,:])
#     train_target=titanic["Survived"].iloc[train]
#     alg.fit(train_predictors,train_target)
#     test_predictions=alg.predict(titanic[predictors].iloc[test,:])
#     predictions.append(test_predictions)
# 
# 
# import numpy as np
# predictions=np.concatenate(predictions,axis=0)
# predictions[predictions>.5]=1
# predictions[predictions<=.5]=0
# accuracy=sum(predictions==titanic["Survived"])/len(predictions)
# print(accuracy)
# =============================================================================
#逻辑回归
# =============================================================================
from sklearn.linear_model import LogisticRegression
from sklearn import cross_validation
# predictors=["Pclass","Sex","Age","SibSp","Parch","Fare","Embarked"]
# alg=LogisticRegression(random_state=1)
# scores=cross_validation.cross_val_score(alg,titanic[predictors],titanic["Survived"],cv=3)
# print(scores.mean())
# =============================================================================
#随机森林
# =============================================================================
# from sklearn import cross_validation
# from sklearn.ensemble import RandomForestClassifier
# predictors=["Pclass","Sex","Age","SibSp","Parch","Fare","Embarked"]
# alg=RandomForestClassifier(random_state=1,n_estimators=150,min_samples_split=12,min_samples_leaf=1)
# kf=cross_validation.KFold(titanic.shape[0],n_folds=3,random_state=1)
# scores=cross_validation.cross_val_score(alg,titanic[predictors],titanic["Survived"],cv=kf)
# print(scores.mean())
# =============================================================================titanic["FamilySize"]=titanic["SibSp"]+titanic["Parch"]
titanic["NameLength"]=titanic["Name"].apply(lambda x:len(x))#提取名字信息
import re
def get_title(name):title_search=re.search('([A-Za-z]+)\.',name)if title_search:return title_search.group(1)return ""titles=titanic["Name"].apply(get_title)
#print(pd.value_counts(titles))title_mapping={"Mr":1,"Miss":2,"Mrs":3,"Master":4,"Dr":5,"Rev":6,"Mlle":7,"Major":8,"Col":9,"Ms":10,"Mme":11,"Lady":12,"Sir":13,"Capt":14,"Don":15,"Jonkheer":16,"Countess":17}
for k,v in title_mapping.items():titles[titles==k]=v
#print(pd.value_counts(titles))
titanic["Title"]=titles
#特征选择
# =============================================================================
# import numpy as np
# from sklearn.feature_selection import SelectKBest,f_classif
# import matplotlib.pyplot as plt
# predictors=["Pclass","Sex","Age","SibSp","Parch","Fare","Embarked","FamilySize","Title","NameLength"]
# selector=SelectKBest(f_classif,k=5)
# selector.fit(titanic[predictors],titanic["Survived"])
# scores=-np.log10(selector.pvalues_)
# 
# plt.bar(range(len(predictors)),scores)
# plt.xticks(range(len(predictors)),predictors,rotation='vertical')
# plt.show()
# =============================================================================# =============================================================================
# from sklearn import cross_validation
# from sklearn.ensemble import RandomForestClassifier
# predictors=["Pclass","Sex","Fare","Title","NameLength"]
# alg=RandomForestClassifier(random_state=1,n_estimators=50,min_samples_split=12,min_samples_leaf=1)
# kf=cross_validation.KFold(titanic.shape[0],n_folds=3,random_state=1)
# scores=cross_validation.cross_val_score(alg,titanic[predictors],titanic["Survived"],cv=kf)
# print(scores.mean())
# =============================================================================#集成学习
from sklearn.cross_validation import KFold
from sklearn.ensemble import GradientBoostingClassifier
import numpy as np
algorithms=[[GradientBoostingClassifier(random_state=1,n_estimators=25,max_depth=3),["Pclass","Sex","Fare","Title","NameLength"]],[LogisticRegression(random_state=1),["Pclass","Sex","Fare","Title","NameLength"]]]kf=KFold(titanic.shape[0],n_folds=3,random_state=1)
predictions=[]
for train,test in kf:train_target=titanic["Survived"].iloc[train]full_test_predictions=[]for alg,predictors in algorithms:alg.fit(titanic[predictors].iloc[train,:],train_target)test_predictions=alg.predict_proba(titanic[predictors].iloc[test,:].astype(float))[:,1]full_test_predictions.append(test_predictions)test_predictions=(full_test_predictions[0]+full_test_predictions[1])/2test_predictions[test_predictions<=.5]=0test_predictions[test_predictions>.5]=1predictions.append(test_predictions)predictions=np.concatenate(predictions,axis=0)
accuracy=sum(predictions==titanic["Survived"])/len(predictions)
print(accuracy)

附:链接:https://pan.baidu.com/s/1K1USWVQQOEM9OLr3M1pniw 密码:n8wz

这篇关于Kaggle--泰坦尼克号失踪者生死情况预测源码(附Titanic数据集)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/563037

相关文章

使用SpringBoot整合Sharding Sphere实现数据脱敏的示例

《使用SpringBoot整合ShardingSphere实现数据脱敏的示例》ApacheShardingSphere数据脱敏模块,通过SQL拦截与改写实现敏感信息加密存储,解决手动处理繁琐及系统改... 目录痛点一:痛点二:脱敏配置Quick Start——Spring 显示配置:1.引入依赖2.创建脱敏

详解如何使用Python构建从数据到文档的自动化工作流

《详解如何使用Python构建从数据到文档的自动化工作流》这篇文章将通过真实工作场景拆解,为大家展示如何用Python构建自动化工作流,让工具代替人力完成这些数字苦力活,感兴趣的小伙伴可以跟随小编一起... 目录一、Excel处理:从数据搬运工到智能分析师二、PDF处理:文档工厂的智能生产线三、邮件自动化:

Python数据分析与可视化的全面指南(从数据清洗到图表呈现)

《Python数据分析与可视化的全面指南(从数据清洗到图表呈现)》Python是数据分析与可视化领域中最受欢迎的编程语言之一,凭借其丰富的库和工具,Python能够帮助我们快速处理、分析数据并生成高质... 目录一、数据采集与初步探索二、数据清洗的七种武器1. 缺失值处理策略2. 异常值检测与修正3. 数据

pandas实现数据concat拼接的示例代码

《pandas实现数据concat拼接的示例代码》pandas.concat用于合并DataFrame或Series,本文主要介绍了pandas实现数据concat拼接的示例代码,具有一定的参考价值,... 目录语法示例:使用pandas.concat合并数据默认的concat:参数axis=0,join=

C#代码实现解析WTGPS和BD数据

《C#代码实现解析WTGPS和BD数据》在现代的导航与定位应用中,准确解析GPS和北斗(BD)等卫星定位数据至关重要,本文将使用C#语言实现解析WTGPS和BD数据,需要的可以了解下... 目录一、代码结构概览1. 核心解析方法2. 位置信息解析3. 经纬度转换方法4. 日期和时间戳解析5. 辅助方法二、L

使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)

《使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)》字体设计和矢量图形处理是编程中一个有趣且实用的领域,通过Python的matplotlib库,我们可以轻松将字体轮廓... 目录背景知识字体轮廓的表示实现步骤1. 安装依赖库2. 准备数据3. 解析路径指令4. 绘制图形关键

解决mysql插入数据锁等待超时报错:Lock wait timeout exceeded;try restarting transaction

《解决mysql插入数据锁等待超时报错:Lockwaittimeoutexceeded;tryrestartingtransaction》:本文主要介绍解决mysql插入数据锁等待超时报... 目录报错信息解决办法1、数据库中执行如下sql2、再到 INNODB_TRX 事务表中查看总结报错信息Lock

使用C#删除Excel表格中的重复行数据的代码详解

《使用C#删除Excel表格中的重复行数据的代码详解》重复行是指在Excel表格中完全相同的多行数据,删除这些重复行至关重要,因为它们不仅会干扰数据分析,还可能导致错误的决策和结论,所以本文给大家介绍... 目录简介使用工具C# 删除Excel工作表中的重复行语法工作原理实现代码C# 删除指定Excel单元

Linux lvm实例之如何创建一个专用于MySQL数据存储的LVM卷组

《Linuxlvm实例之如何创建一个专用于MySQL数据存储的LVM卷组》:本文主要介绍使用Linux创建一个专用于MySQL数据存储的LVM卷组的实例,具有很好的参考价值,希望对大家有所帮助,... 目录在Centos 7上创建卷China编程组并配置mysql数据目录1. 检查现有磁盘2. 创建物理卷3. 创

Nacos日志与Raft的数据清理指南

《Nacos日志与Raft的数据清理指南》随着运行时间的增长,Nacos的日志文件(logs/)和Raft持久化数据(data/protocol/raft/)可能会占用大量磁盘空间,影响系统稳定性,本... 目录引言1. Nacos 日志文件(logs/ 目录)清理1.1 日志文件的作用1.2 是否可以删除