Pointnet++改进:更换不同的激活函数,打造更优性能

2024-01-02 16:12

本文主要是介绍Pointnet++改进:更换不同的激活函数,打造更优性能,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

简介:
1.该教程提供大量的首发改进的方式,降低上手难度,多种结构改进,助力寻找创新点!
2.本篇文章对Pointnet++进行激活函数的改进,助力解决RELU激活函数缺陷。
3.专栏持续更新,紧随最新的研究内容。


文章目录

  • 步骤一
  • 步骤二
  • 步骤三


代码地址

步骤一

新建activate.py文件,我存放在新建的block目录下,加入以下代码:

# Activation functionsimport torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np# SiLU https://arxiv.org/pdf/1606.08415.pdf ----------------------------------------------------------------------------
class SiLU(nn.Module):  # export-friendly version of nn.SiLU()@staticmethoddef forward(x):return x * torch.sigmoid(x)class Hardswish(nn.Module):  # export-friendly version of nn.Hardswish()@staticmethoddef forward(x):# return x * F.hardsigmoid(x)  # for torchscript and CoreMLreturn x * F.hardtanh(x + 3, 0., 6.) / 6.  # for torchscript, CoreML and ONNXclass MemoryEfficientSwish(nn.Module):class F(torch.autograd.Function):@staticmethoddef forward(ctx, x):ctx.save_for_backward(x)return x * torch.sigmoid(x)@staticmethoddef backward(ctx, grad_output):x = ctx.saved_tensors[0]sx = torch.sigmoid(x)return grad_output * (sx * (1 + x * (1 - sx)))def forward(self, x):return self.F.apply(x)# Mish https://github.com/digantamisra98/Mish --------------------------------------------------------------------------
class Mish(nn.Module):@staticmethoddef forward(x):return x * F.softplus(x).tanh()class MemoryEfficientMish(nn.Module):class F(torch.autograd.Function):@staticmethoddef forward(ctx, x):ctx.save_for_backward(x)return x.mul(torch.tanh(F.softplus(x)))  # x * tanh(ln(1 + aconcxunlian(x)))@staticmethoddef backward(ctx, grad_output):x = ctx.saved_tensors[0]sx = torch.sigmoid(x)fx = F.softplus(x).tanh()return grad_output * (fx + x * sx * (1 - fx * fx))def forward(self, x):return self.F.apply(x)# FReLU https://arxiv.org/abs/2007.11824 -------------------------------------------------------------------------------
class FReLU(nn.Module):def __init__(self, c1, k=3):  # ch_in, kernelsuper().__init__()self.conv = nn.Conv2d(c1, c1, k, 1, 1, groups=c1, bias=False)self.bn = nn.BatchNorm2d(c1)def forward(self, x):return torch.max(x, self.bn(self.conv(x)))class GELU(nn.Module):def __init__(self):super(GELU, self).__init__()def forward(self, x):return 0.5 * x * (1 + torch.tanh(np.sqrt(2 / np.pi) * (x + 0.044715 * torch.pow(x, 3))))#
class MetaAconC(nn.Module):r""" ACON activation (activate or not).MetaAconC: (p1*x-p2*x) * sigmoid(beta*(p1*x-p2*x)) + p2*x, beta is generated by a small networkaccording to "Activate or Not: Learning Customized Activation" <https://arxiv.org/pdf/2009.04759.pdf>."""def __init__(self, c1, k=1, s=1, r=16):  # ch_in, kernel, stride, rsuper().__init__()c2 = max(r, c1 // r)self.p1 = nn.Parameter(torch.randn(1, c1, 1, 1))self.p2 = nn.Parameter(torch.randn(1, c1, 1, 1))self.fc1 = nn.Conv2d(c1, c2, k, s, bias=True)self.fc2 = nn.Conv2d(c2, c1, k, s, bias=True)# self.bn1 = nn.BatchNorm2d(c2)# self.bn2 = nn.BatchNorm2d(c1)def forward(self, x):y = x.mean(dim=2, keepdims=True).mean(dim=3, keepdims=True)# batch-size 1 bug/instabilities https://github.com/ultralytics/yolov5/issues/2891# beta = torch.sigmoid(self.bn2(self.fc2(self.bn1(self.fc1(y)))))  # bug/unstablebeta = torch.sigmoid(self.fc2(self.fc1(y)))  # bug patch BN layers removeddpx = (self.p1 - self.p2) * xreturn dpx * torch.sigmoid(beta * dpx) + self.p2 * x
###
class AconC(nn.Module):"""ACON https://arxiv.org/pdf/2009.04759.pdfACON activation (activate or not).AconC: (p1*x-p2*x) * sigmoid(beta*(p1*x-p2*x)) + p2*x, beta is a learnable parameteraccording to "Activate or Not: Learning Customized Activation" <https://arxiv.org/pdf/2009.04759.pdf>."""def __init__(self, c1):super().__init__()self.p1 = nn.Parameter(torch.randn(1, c1, 1, 1))self.p2 = nn.Parameter(torch.randn(1, c1, 1, 1))self.beta = nn.Parameter(torch.ones(1, c1, 1, 1))def forward(self, x):dpx = (self.p1 - self.p2) * xreturn dpx * torch.sigmoid(self.beta * dpx) + self.p2 * x

步骤二

在models/pointnet2_utils.py中加入以下代码,该代码将PointNetSetAbstraction中的mlp三层感知机重新封装成一个class Conv模块,便于直接在Conv模块中修改激活函数,修改后的代码和源码结构是一致的。修改不同的激活函数直接在Conv类中修改即可。
PointNetSetAbstraction结构图如下,PointNetSetAbstractionMSG比PointNetSetAbstraction多一个不同尺度的三层mlp,其他结构是一样的。
在这里插入图片描述

class Conv(nn.Module):# Standard convolutiondef __init__(self, c1, c2, k=1):  # ch_in, ch_out, kernel, stride, padding, groupssuper(Conv, self).__init__()self.conv = nn.Conv2d(c1, c2, k)self.bn = nn.BatchNorm2d(c2)#self.act = nn.SiLU()#self.act = nn.LeakyReLU(0.1)self.act = nn.ReLU()#self.act = MetaAconC(c2)#self.act = AconC(c2)#self.act = Mish()#self.act = Hardswish()#self.act = FReLU(c2)def forward(self, x):return self.act(self.bn(self.conv(x)))def fuseforward(self, x):return self.act(self.conv(x))class PointNetSetAbstractionAttention(nn.Module):def __init__(self, npoint, radius, nsample, in_channel, mlp, group_all):super(PointNetSetAbstractionAttention, self).__init__()self.npoint = npointself.radius = radiusself.nsample = nsample#self.mlp_convs = nn.ModuleList()self.mlp_conv1 = Conv(in_channel,mlp[0],1)self.mlp_attention = CBAM(mlp[0])self.mlp_conv2 = Conv(mlp[0],mlp[1],1)self.mlp_conv3 = Conv(mlp[1],mlp[2],1)self.group_all = group_alldef forward(self, xyz, points):"""Input:xyz: input points position data, [B, C, N]points: input points data, [B, D, N]Return:new_xyz: sampled points position data, [B, C, S]new_points_concat: sample points feature data, [B, D', S]"""xyz = xyz.permute(0, 2, 1)if points is not None:points = points.permute(0, 2, 1)if self.group_all:new_xyz, new_points = sample_and_group_all(xyz, points)else:new_xyz, new_points = sample_and_group(self.npoint, self.radius, self.nsample, xyz, points)# new_xyz: sampled points position data, [B, npoint, C]# new_points: sampled points data, [B, npoint, nsample, C+D]new_points = new_points.permute(0, 3, 2, 1)  # [B, C+D, nsample,npoint]new_points=self.mlp_conv1(new_points)new_points = self.mlp_attention(new_points)new_points = self.mlp_conv2(new_points)new_points = self.mlp_conv3(new_points)new_points = torch.max(new_points, 2)[0]new_xyz = new_xyz.permute(0, 2, 1)return new_xyz, new_pointsclass PointNetSetAbstractionMsgAttention(nn.Module):def __init__(self, npoint, radius_list, nsample_list, in_channel, mlp_list):super(PointNetSetAbstractionMsgAttention, self).__init__()self.npoint = npointself.radius_list = radius_listself.nsample_list = nsample_listself.mlp_conv00 = Conv(in_channel+3,mlp_list[0][0],1)self.mlp_conv01 = Conv(mlp_list[0][0],mlp_list[0][1],1)self.mlp_conv02 = Conv(mlp_list[0][1],mlp_list[0][2],1)self.mlp_conv10 = Conv(in_channel+3,mlp_list[1][0],1)self.mlp_conv11 = Conv(mlp_list[1][0],mlp_list[1][1],1)self.mlp_conv12 = Conv(mlp_list[1][1],mlp_list[1][2],1)# self.conv_blocks = nn.ModuleList()# self.bn_blocks = nn.ModuleList()# for i in range(len(mlp_list)):#     convs = nn.ModuleList()#     bns = nn.ModuleList()#     last_channel = in_channel + 3#     for out_channel in mlp_list[i]:#         convs.append(nn.Conv2d(last_channel, out_channel, 1))#         bns.append(nn.BatchNorm2d(out_channel))#         last_channel = out_channel#     self.conv_blocks.append(convs)#     self.bn_blocks.append(bns)def forward(self, xyz, points):"""Input:xyz: input points position data, [B, C, N]points: input points data, [B, D, N]Return:new_xyz: sampled points position data, [B, C, S]new_points_concat: sample points feature data, [B, D', S]"""xyz = xyz.permute(0, 2, 1)if points is not None:points = points.permute(0, 2, 1)B, N, C = xyz.shapeS = self.npointnew_xyz = index_points(xyz, farthest_point_sample(xyz, S))new_points_list = []for i, radius in enumerate(self.radius_list):K = self.nsample_list[i]group_idx = query_ball_point(radius, K, xyz, new_xyz)grouped_xyz = index_points(xyz, group_idx)grouped_xyz -= new_xyz.view(B, S, 1, C)if points is not None:grouped_points = index_points(points, group_idx)grouped_points = torch.cat([grouped_points, grouped_xyz], dim=-1)else:grouped_points = grouped_xyzgrouped_points = grouped_points.permute(0, 3, 2, 1)  # [B, D, K, S]if i==0:grouped_points =self.mlp_conv00(grouped_points)grouped_points = self.mlp_conv01(grouped_points)grouped_points = self.mlp_conv02(grouped_points)else:grouped_points = self.mlp_conv10(grouped_points)grouped_points = self.mlp_conv11(grouped_points)grouped_points = self.mlp_conv12(grouped_points)# for j in range(len(self.conv_blocks[i])):#     conv = self.conv_blocks[i][j]#     bn = self.bn_blocks[i][j]#     grouped_points =  F.relu(bn(conv(grouped_points)))new_points = torch.max(grouped_points, 2)[0]  # [B, D', S]new_points_list.append(new_points)new_xyz = new_xyz.permute(0, 2, 1)new_points_concat = torch.cat(new_points_list, dim=1)return new_xyz, new_points_concat

步骤三

在不同的模型中修改调用即可,如在models/pointnet2_sem_seg.py文件中修改,训练即可

import torch.nn as nn
import torch.nn.functional as F
# from models.pointnet2_utils import PointNetSetAbstraction, PointNetFeaturePropagation, PointNetSetAbstractionKPconv, \
#     PointNetSetAbstractionAttention
from models.pointnet2_utils import *class get_model(nn.Module):def __init__(self, num_classes):super(get_model, self).__init__()self.sa1 = PointNetSetAbstractionAttention(1024, 0.1, 32, 9 + 3, [32, 32, 64], False)self.sa2 = PointNetSetAbstraction(256, 0.2, 32, 64 + 3, [64, 64, 128], False)self.sa3 = PointNetSetAbstraction(64, 0.4, 32, 128 + 3, [128, 128, 256], False)self.sa4 = PointNetSetAbstraction(16, 0.8, 32, 256 + 3, [256, 256, 512], False)self.fp4 = PointNetFeaturePropagation(768, [256, 256])self.fp3 = PointNetFeaturePropagation(384, [256, 256])self.fp2 = PointNetFeaturePropagation(320, [256, 128])self.fp1 = PointNetFeaturePropagation(128, [128, 128, 128])self.conv1 = nn.Conv1d(128, 128, 1)self.bn1 = nn.BatchNorm1d(128)self.drop1 = nn.Dropout(0.5)self.conv2 = nn.Conv1d(128, num_classes, 1)def forward(self, xyz):l0_points = xyzl0_xyz = xyz[:,:3,:]l1_xyz, l1_points = self.sa1(l0_xyz, l0_points)l2_xyz, l2_points = self.sa2(l1_xyz, l1_points)l3_xyz, l3_points = self.sa3(l2_xyz, l2_points)l4_xyz, l4_points = self.sa4(l3_xyz, l3_points)l3_points = self.fp4(l3_xyz, l4_xyz, l3_points, l4_points)l2_points = self.fp3(l2_xyz, l3_xyz, l2_points, l3_points)l1_points = self.fp2(l1_xyz, l2_xyz, l1_points, l2_points)l0_points = self.fp1(l0_xyz, l1_xyz, None, l1_points)x = self.drop1(F.relu(self.bn1(self.conv1(l0_points))))x = self.conv2(x)x = F.log_softmax(x, dim=1)x = x.permute(0, 2, 1)return x, l4_pointsclass get_loss(nn.Module):def __init__(self):super(get_loss, self).__init__()self.gamma=2def forward(self, pred, target, trans_feat, weight):#pred: 模型预测的输出   target: 真实的标签或数据,用于计算损失total_loss = F.nll_loss(pred, target, weight=weight)return total_loss
if __name__ == '__main__':import  torchmodel = get_model(13)xyz = torch.rand(6, 9, 2048)(model(xyz))

这篇关于Pointnet++改进:更换不同的激活函数,打造更优性能的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/562972

相关文章

Docker多阶段镜像构建与缓存利用性能优化实践指南

《Docker多阶段镜像构建与缓存利用性能优化实践指南》这篇文章将从原理层面深入解析Docker多阶段构建与缓存机制,结合实际项目示例,说明如何有效利用构建缓存,组织镜像层次,最大化提升构建速度并减少... 目录一、技术背景与应用场景二、核心原理深入分析三、关键 dockerfile 解读3.1 Docke

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

SpringBoot实现不同接口指定上传文件大小的具体步骤

《SpringBoot实现不同接口指定上传文件大小的具体步骤》:本文主要介绍在SpringBoot中通过自定义注解、AOP拦截和配置文件实现不同接口上传文件大小限制的方法,强调需设置全局阈值远大于... 目录一  springboot实现不同接口指定文件大小1.1 思路说明1.2 工程启动说明二 具体实施2

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

GO语言中函数命名返回值的使用

《GO语言中函数命名返回值的使用》在Go语言中,函数可以为其返回值指定名称,这被称为命名返回值或命名返回参数,这种特性可以使代码更清晰,特别是在返回多个值时,感兴趣的可以了解一下... 目录基本语法函数命名返回特点代码示例命名特点基本语法func functionName(parameters) (nam

Python Counter 函数使用案例

《PythonCounter函数使用案例》Counter是collections模块中的一个类,专门用于对可迭代对象中的元素进行计数,接下来通过本文给大家介绍PythonCounter函数使用案例... 目录一、Counter函数概述二、基本使用案例(一)列表元素计数(二)字符串字符计数(三)元组计数三、C

深度剖析SpringBoot日志性能提升的原因与解决

《深度剖析SpringBoot日志性能提升的原因与解决》日志记录本该是辅助工具,却为何成了性能瓶颈,SpringBoot如何用代码彻底破解日志导致的高延迟问题,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言第一章:日志性能陷阱的底层原理1.1 日志级别的“双刃剑”效应1.2 同步日志的“吞吐量杀手”

Python中的filter() 函数的工作原理及应用技巧

《Python中的filter()函数的工作原理及应用技巧》Python的filter()函数用于筛选序列元素,返回迭代器,适合函数式编程,相比列表推导式,内存更优,尤其适用于大数据集,结合lamb... 目录前言一、基本概念基本语法二、使用方式1. 使用 lambda 函数2. 使用普通函数3. 使用 N

MySQL中REPLACE函数与语句举例详解

《MySQL中REPLACE函数与语句举例详解》在MySQL中REPLACE函数是一个用于处理字符串的强大工具,它的主要功能是替换字符串中的某些子字符串,:本文主要介绍MySQL中REPLACE函... 目录一、REPLACE()函数语法:参数说明:功能说明:示例:二、REPLACE INTO语句语法:参数

Python Flask实现定时任务的不同方法详解

《PythonFlask实现定时任务的不同方法详解》在Flask中实现定时任务,最常用的方法是使用APScheduler库,本文将提供一个完整的解决方案,有需要的小伙伴可以跟随小编一起学习一下... 目录完js整实现方案代码解释1. 依赖安装2. 核心组件3. 任务类型4. 任务管理5. 持久化存储生产环境