Pointnet++改进:更换不同的激活函数,打造更优性能

2024-01-02 16:12

本文主要是介绍Pointnet++改进:更换不同的激活函数,打造更优性能,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

简介:
1.该教程提供大量的首发改进的方式,降低上手难度,多种结构改进,助力寻找创新点!
2.本篇文章对Pointnet++进行激活函数的改进,助力解决RELU激活函数缺陷。
3.专栏持续更新,紧随最新的研究内容。


文章目录

  • 步骤一
  • 步骤二
  • 步骤三


代码地址

步骤一

新建activate.py文件,我存放在新建的block目录下,加入以下代码:

# Activation functionsimport torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np# SiLU https://arxiv.org/pdf/1606.08415.pdf ----------------------------------------------------------------------------
class SiLU(nn.Module):  # export-friendly version of nn.SiLU()@staticmethoddef forward(x):return x * torch.sigmoid(x)class Hardswish(nn.Module):  # export-friendly version of nn.Hardswish()@staticmethoddef forward(x):# return x * F.hardsigmoid(x)  # for torchscript and CoreMLreturn x * F.hardtanh(x + 3, 0., 6.) / 6.  # for torchscript, CoreML and ONNXclass MemoryEfficientSwish(nn.Module):class F(torch.autograd.Function):@staticmethoddef forward(ctx, x):ctx.save_for_backward(x)return x * torch.sigmoid(x)@staticmethoddef backward(ctx, grad_output):x = ctx.saved_tensors[0]sx = torch.sigmoid(x)return grad_output * (sx * (1 + x * (1 - sx)))def forward(self, x):return self.F.apply(x)# Mish https://github.com/digantamisra98/Mish --------------------------------------------------------------------------
class Mish(nn.Module):@staticmethoddef forward(x):return x * F.softplus(x).tanh()class MemoryEfficientMish(nn.Module):class F(torch.autograd.Function):@staticmethoddef forward(ctx, x):ctx.save_for_backward(x)return x.mul(torch.tanh(F.softplus(x)))  # x * tanh(ln(1 + aconcxunlian(x)))@staticmethoddef backward(ctx, grad_output):x = ctx.saved_tensors[0]sx = torch.sigmoid(x)fx = F.softplus(x).tanh()return grad_output * (fx + x * sx * (1 - fx * fx))def forward(self, x):return self.F.apply(x)# FReLU https://arxiv.org/abs/2007.11824 -------------------------------------------------------------------------------
class FReLU(nn.Module):def __init__(self, c1, k=3):  # ch_in, kernelsuper().__init__()self.conv = nn.Conv2d(c1, c1, k, 1, 1, groups=c1, bias=False)self.bn = nn.BatchNorm2d(c1)def forward(self, x):return torch.max(x, self.bn(self.conv(x)))class GELU(nn.Module):def __init__(self):super(GELU, self).__init__()def forward(self, x):return 0.5 * x * (1 + torch.tanh(np.sqrt(2 / np.pi) * (x + 0.044715 * torch.pow(x, 3))))#
class MetaAconC(nn.Module):r""" ACON activation (activate or not).MetaAconC: (p1*x-p2*x) * sigmoid(beta*(p1*x-p2*x)) + p2*x, beta is generated by a small networkaccording to "Activate or Not: Learning Customized Activation" <https://arxiv.org/pdf/2009.04759.pdf>."""def __init__(self, c1, k=1, s=1, r=16):  # ch_in, kernel, stride, rsuper().__init__()c2 = max(r, c1 // r)self.p1 = nn.Parameter(torch.randn(1, c1, 1, 1))self.p2 = nn.Parameter(torch.randn(1, c1, 1, 1))self.fc1 = nn.Conv2d(c1, c2, k, s, bias=True)self.fc2 = nn.Conv2d(c2, c1, k, s, bias=True)# self.bn1 = nn.BatchNorm2d(c2)# self.bn2 = nn.BatchNorm2d(c1)def forward(self, x):y = x.mean(dim=2, keepdims=True).mean(dim=3, keepdims=True)# batch-size 1 bug/instabilities https://github.com/ultralytics/yolov5/issues/2891# beta = torch.sigmoid(self.bn2(self.fc2(self.bn1(self.fc1(y)))))  # bug/unstablebeta = torch.sigmoid(self.fc2(self.fc1(y)))  # bug patch BN layers removeddpx = (self.p1 - self.p2) * xreturn dpx * torch.sigmoid(beta * dpx) + self.p2 * x
###
class AconC(nn.Module):"""ACON https://arxiv.org/pdf/2009.04759.pdfACON activation (activate or not).AconC: (p1*x-p2*x) * sigmoid(beta*(p1*x-p2*x)) + p2*x, beta is a learnable parameteraccording to "Activate or Not: Learning Customized Activation" <https://arxiv.org/pdf/2009.04759.pdf>."""def __init__(self, c1):super().__init__()self.p1 = nn.Parameter(torch.randn(1, c1, 1, 1))self.p2 = nn.Parameter(torch.randn(1, c1, 1, 1))self.beta = nn.Parameter(torch.ones(1, c1, 1, 1))def forward(self, x):dpx = (self.p1 - self.p2) * xreturn dpx * torch.sigmoid(self.beta * dpx) + self.p2 * x

步骤二

在models/pointnet2_utils.py中加入以下代码,该代码将PointNetSetAbstraction中的mlp三层感知机重新封装成一个class Conv模块,便于直接在Conv模块中修改激活函数,修改后的代码和源码结构是一致的。修改不同的激活函数直接在Conv类中修改即可。
PointNetSetAbstraction结构图如下,PointNetSetAbstractionMSG比PointNetSetAbstraction多一个不同尺度的三层mlp,其他结构是一样的。
在这里插入图片描述

class Conv(nn.Module):# Standard convolutiondef __init__(self, c1, c2, k=1):  # ch_in, ch_out, kernel, stride, padding, groupssuper(Conv, self).__init__()self.conv = nn.Conv2d(c1, c2, k)self.bn = nn.BatchNorm2d(c2)#self.act = nn.SiLU()#self.act = nn.LeakyReLU(0.1)self.act = nn.ReLU()#self.act = MetaAconC(c2)#self.act = AconC(c2)#self.act = Mish()#self.act = Hardswish()#self.act = FReLU(c2)def forward(self, x):return self.act(self.bn(self.conv(x)))def fuseforward(self, x):return self.act(self.conv(x))class PointNetSetAbstractionAttention(nn.Module):def __init__(self, npoint, radius, nsample, in_channel, mlp, group_all):super(PointNetSetAbstractionAttention, self).__init__()self.npoint = npointself.radius = radiusself.nsample = nsample#self.mlp_convs = nn.ModuleList()self.mlp_conv1 = Conv(in_channel,mlp[0],1)self.mlp_attention = CBAM(mlp[0])self.mlp_conv2 = Conv(mlp[0],mlp[1],1)self.mlp_conv3 = Conv(mlp[1],mlp[2],1)self.group_all = group_alldef forward(self, xyz, points):"""Input:xyz: input points position data, [B, C, N]points: input points data, [B, D, N]Return:new_xyz: sampled points position data, [B, C, S]new_points_concat: sample points feature data, [B, D', S]"""xyz = xyz.permute(0, 2, 1)if points is not None:points = points.permute(0, 2, 1)if self.group_all:new_xyz, new_points = sample_and_group_all(xyz, points)else:new_xyz, new_points = sample_and_group(self.npoint, self.radius, self.nsample, xyz, points)# new_xyz: sampled points position data, [B, npoint, C]# new_points: sampled points data, [B, npoint, nsample, C+D]new_points = new_points.permute(0, 3, 2, 1)  # [B, C+D, nsample,npoint]new_points=self.mlp_conv1(new_points)new_points = self.mlp_attention(new_points)new_points = self.mlp_conv2(new_points)new_points = self.mlp_conv3(new_points)new_points = torch.max(new_points, 2)[0]new_xyz = new_xyz.permute(0, 2, 1)return new_xyz, new_pointsclass PointNetSetAbstractionMsgAttention(nn.Module):def __init__(self, npoint, radius_list, nsample_list, in_channel, mlp_list):super(PointNetSetAbstractionMsgAttention, self).__init__()self.npoint = npointself.radius_list = radius_listself.nsample_list = nsample_listself.mlp_conv00 = Conv(in_channel+3,mlp_list[0][0],1)self.mlp_conv01 = Conv(mlp_list[0][0],mlp_list[0][1],1)self.mlp_conv02 = Conv(mlp_list[0][1],mlp_list[0][2],1)self.mlp_conv10 = Conv(in_channel+3,mlp_list[1][0],1)self.mlp_conv11 = Conv(mlp_list[1][0],mlp_list[1][1],1)self.mlp_conv12 = Conv(mlp_list[1][1],mlp_list[1][2],1)# self.conv_blocks = nn.ModuleList()# self.bn_blocks = nn.ModuleList()# for i in range(len(mlp_list)):#     convs = nn.ModuleList()#     bns = nn.ModuleList()#     last_channel = in_channel + 3#     for out_channel in mlp_list[i]:#         convs.append(nn.Conv2d(last_channel, out_channel, 1))#         bns.append(nn.BatchNorm2d(out_channel))#         last_channel = out_channel#     self.conv_blocks.append(convs)#     self.bn_blocks.append(bns)def forward(self, xyz, points):"""Input:xyz: input points position data, [B, C, N]points: input points data, [B, D, N]Return:new_xyz: sampled points position data, [B, C, S]new_points_concat: sample points feature data, [B, D', S]"""xyz = xyz.permute(0, 2, 1)if points is not None:points = points.permute(0, 2, 1)B, N, C = xyz.shapeS = self.npointnew_xyz = index_points(xyz, farthest_point_sample(xyz, S))new_points_list = []for i, radius in enumerate(self.radius_list):K = self.nsample_list[i]group_idx = query_ball_point(radius, K, xyz, new_xyz)grouped_xyz = index_points(xyz, group_idx)grouped_xyz -= new_xyz.view(B, S, 1, C)if points is not None:grouped_points = index_points(points, group_idx)grouped_points = torch.cat([grouped_points, grouped_xyz], dim=-1)else:grouped_points = grouped_xyzgrouped_points = grouped_points.permute(0, 3, 2, 1)  # [B, D, K, S]if i==0:grouped_points =self.mlp_conv00(grouped_points)grouped_points = self.mlp_conv01(grouped_points)grouped_points = self.mlp_conv02(grouped_points)else:grouped_points = self.mlp_conv10(grouped_points)grouped_points = self.mlp_conv11(grouped_points)grouped_points = self.mlp_conv12(grouped_points)# for j in range(len(self.conv_blocks[i])):#     conv = self.conv_blocks[i][j]#     bn = self.bn_blocks[i][j]#     grouped_points =  F.relu(bn(conv(grouped_points)))new_points = torch.max(grouped_points, 2)[0]  # [B, D', S]new_points_list.append(new_points)new_xyz = new_xyz.permute(0, 2, 1)new_points_concat = torch.cat(new_points_list, dim=1)return new_xyz, new_points_concat

步骤三

在不同的模型中修改调用即可,如在models/pointnet2_sem_seg.py文件中修改,训练即可

import torch.nn as nn
import torch.nn.functional as F
# from models.pointnet2_utils import PointNetSetAbstraction, PointNetFeaturePropagation, PointNetSetAbstractionKPconv, \
#     PointNetSetAbstractionAttention
from models.pointnet2_utils import *class get_model(nn.Module):def __init__(self, num_classes):super(get_model, self).__init__()self.sa1 = PointNetSetAbstractionAttention(1024, 0.1, 32, 9 + 3, [32, 32, 64], False)self.sa2 = PointNetSetAbstraction(256, 0.2, 32, 64 + 3, [64, 64, 128], False)self.sa3 = PointNetSetAbstraction(64, 0.4, 32, 128 + 3, [128, 128, 256], False)self.sa4 = PointNetSetAbstraction(16, 0.8, 32, 256 + 3, [256, 256, 512], False)self.fp4 = PointNetFeaturePropagation(768, [256, 256])self.fp3 = PointNetFeaturePropagation(384, [256, 256])self.fp2 = PointNetFeaturePropagation(320, [256, 128])self.fp1 = PointNetFeaturePropagation(128, [128, 128, 128])self.conv1 = nn.Conv1d(128, 128, 1)self.bn1 = nn.BatchNorm1d(128)self.drop1 = nn.Dropout(0.5)self.conv2 = nn.Conv1d(128, num_classes, 1)def forward(self, xyz):l0_points = xyzl0_xyz = xyz[:,:3,:]l1_xyz, l1_points = self.sa1(l0_xyz, l0_points)l2_xyz, l2_points = self.sa2(l1_xyz, l1_points)l3_xyz, l3_points = self.sa3(l2_xyz, l2_points)l4_xyz, l4_points = self.sa4(l3_xyz, l3_points)l3_points = self.fp4(l3_xyz, l4_xyz, l3_points, l4_points)l2_points = self.fp3(l2_xyz, l3_xyz, l2_points, l3_points)l1_points = self.fp2(l1_xyz, l2_xyz, l1_points, l2_points)l0_points = self.fp1(l0_xyz, l1_xyz, None, l1_points)x = self.drop1(F.relu(self.bn1(self.conv1(l0_points))))x = self.conv2(x)x = F.log_softmax(x, dim=1)x = x.permute(0, 2, 1)return x, l4_pointsclass get_loss(nn.Module):def __init__(self):super(get_loss, self).__init__()self.gamma=2def forward(self, pred, target, trans_feat, weight):#pred: 模型预测的输出   target: 真实的标签或数据,用于计算损失total_loss = F.nll_loss(pred, target, weight=weight)return total_loss
if __name__ == '__main__':import  torchmodel = get_model(13)xyz = torch.rand(6, 9, 2048)(model(xyz))

这篇关于Pointnet++改进:更换不同的激活函数,打造更优性能的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/562972

相关文章

Pandas中统计汇总可视化函数plot()的使用

《Pandas中统计汇总可视化函数plot()的使用》Pandas提供了许多强大的数据处理和分析功能,其中plot()函数就是其可视化功能的一个重要组成部分,本文主要介绍了Pandas中统计汇总可视化... 目录一、plot()函数简介二、plot()函数的基本用法三、plot()函数的参数详解四、使用pl

基于Python打造一个智能单词管理神器

《基于Python打造一个智能单词管理神器》这篇文章主要为大家详细介绍了如何使用Python打造一个智能单词管理神器,从查询到导出的一站式解决,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 项目概述:为什么需要这个工具2. 环境搭建与快速入门2.1 环境要求2.2 首次运行配置3. 核心功能使用指

利用Python打造一个Excel记账模板

《利用Python打造一个Excel记账模板》这篇文章主要为大家详细介绍了如何使用Python打造一个超实用的Excel记账模板,可以帮助大家高效管理财务,迈向财富自由之路,感兴趣的小伙伴快跟随小编一... 目录设置预算百分比超支标红预警记账模板功能介绍基础记账预算管理可视化分析摸鱼时间理财法碎片时间利用财

Python的time模块一些常用功能(各种与时间相关的函数)

《Python的time模块一些常用功能(各种与时间相关的函数)》Python的time模块提供了各种与时间相关的函数,包括获取当前时间、处理时间间隔、执行时间测量等,:本文主要介绍Python的... 目录1. 获取当前时间2. 时间格式化3. 延时执行4. 时间戳运算5. 计算代码执行时间6. 转换为指

Python正则表达式语法及re模块中的常用函数详解

《Python正则表达式语法及re模块中的常用函数详解》这篇文章主要给大家介绍了关于Python正则表达式语法及re模块中常用函数的相关资料,正则表达式是一种强大的字符串处理工具,可以用于匹配、切分、... 目录概念、作用和步骤语法re模块中的常用函数总结 概念、作用和步骤概念: 本身也是一个字符串,其中

Java使用SLF4J记录不同级别日志的示例详解

《Java使用SLF4J记录不同级别日志的示例详解》SLF4J是一个简单的日志门面,它允许在运行时选择不同的日志实现,这篇文章主要为大家详细介绍了如何使用SLF4J记录不同级别日志,感兴趣的可以了解下... 目录一、SLF4J简介二、添加依赖三、配置Logback四、记录不同级别的日志五、总结一、SLF4J

Python结合PyWebView库打造跨平台桌面应用

《Python结合PyWebView库打造跨平台桌面应用》随着Web技术的发展,将HTML/CSS/JavaScript与Python结合构建桌面应用成为可能,本文将系统讲解如何使用PyWebView... 目录一、技术原理与优势分析1.1 架构原理1.2 核心优势二、开发环境搭建2.1 安装依赖2.2 验

shell编程之函数与数组的使用详解

《shell编程之函数与数组的使用详解》:本文主要介绍shell编程之函数与数组的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录shell函数函数的用法俩个数求和系统资源监控并报警函数函数变量的作用范围函数的参数递归函数shell数组获取数组的长度读取某下的

基于Python打造一个全能文本处理工具

《基于Python打造一个全能文本处理工具》:本文主要介绍一个基于Python+Tkinter开发的全功能本地化文本处理工具,它不仅具备基础的格式转换功能,更集成了中文特色处理等实用功能,有需要的... 目录1. 概述:当文本处理遇上python图形界面2. 功能全景图:六大核心模块解析3.运行效果4. 相

MySQL高级查询之JOIN、子查询、窗口函数实际案例

《MySQL高级查询之JOIN、子查询、窗口函数实际案例》:本文主要介绍MySQL高级查询之JOIN、子查询、窗口函数实际案例的相关资料,JOIN用于多表关联查询,子查询用于数据筛选和过滤,窗口函... 目录前言1. JOIN(连接查询)1.1 内连接(INNER JOIN)1.2 左连接(LEFT JOI