Ubuntu 18.04 LTS安装numba python性能优化的比较:numba,pypy, cython

2024-01-02 14:38

本文主要是介绍Ubuntu 18.04 LTS安装numba python性能优化的比较:numba,pypy, cython,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 

 

安装很简单, 我就不多废话了, 直接上指令:

sudo apt-get install llvm
sudo -H pip install numba

python 程序性能优化的套路一般有两种:1)jit, 即just in time compiler, 即时编译器,在运行时将某些函数编译成二进程代码,使用这种方式的有:numba 和pypy;2)将python代码转换成c++/c代码,然后编译执行,这种方式有:cython和nuitka。总而言之,转换成c++/c代码以后编译成二进制文件执行的效率比用numba和pypy即时编译执行的效率要高。

1. 首先看一下python写的求质数的函数 以及 用 numba的jit优化的函数

# main.py# 纯python语言写的求质数的代码
def primes_python(nb_primes):p = []n = 2while len(p) < nb_primes:# Is n prime?for i in p:if n % i == 0:break# If no break occurred in the loopelse:p.append(n)n += 1return p# 使用numba的jit优化的代码,只需要在上面的函数加一行代码
from numba import jit@jit
def primes_jit(nb_primes):p = []n = 2while len(p) < nb_primes:# Is n prime?for i in p:if n % i == 0:break# If no break occurred in the loopelse:p.append(n)n += 1return p


 

2. 新建一个primes.pyx文件,写一个cython函数,其中声明了变量的类型

# primes.pyxdef primes(int nb_primes):cdef int n, i, len_pcdef int p[1000]if nb_primes > 1000:nb_primes = 1000len_p = 0  # The current number of elements in p.n = 2while len_p < nb_primes:# Is n prime?for i in p[:len_p]:if n % i == 0:break# If no break occurred in the loop, we have a prime.else:p[len_p] = nlen_p += 1n += 1# Let's return the result in a python list:result_as_list  = [prime for prime in p[:len_p]]return result_as_list


再建立一个primes_python.pyx文件,新建一个和之前python里面写的一样的函数,作为对比。

# primes_python.pyxdef primes_python(nb_primes):p = []n = 2while len(p) < nb_primes:# Is n prime?for i in p:if n % i == 0:break# If no break occurred in the loopelse:p.append(n)n += 1return p


新建setup.py文件,用来编译.pyx函数

from distutils.core import setup
from Cython.Build import cythonizesetup(ext_modules=cythonize(["primes.pyx", "primes_python.pyx"],annotate=True)
)


 
# 编译命令用这个

# python setup.py build_ext --inplace


使用python setup.py build_ext --inplace编译后可以得到.pyd文件,就是可以导入的python库了。

3. 修改一下main.py, 加入函数调用和度量

# main.py 的完整内容import primes
import primes_python
import timeit
from numba import jitdef primes_python(nb_primes):p = []n = 2while len(p) < nb_primes:# Is n prime?for i in p:if n % i == 0:break# If no break occurred in the loopelse:p.append(n)n += 1return p@jit
def primes_jit(nb_primes):p = []n = 2while len(p) < nb_primes:# Is n prime?for i in p:if n % i == 0:break# If no break occurred in the loopelse:p.append(n)n += 1return pif __name__ == "__main__":repeat_times = 1000t1 = timeit.timeit(stmt="primes_python(1000)",setup="from __main__ import primes_python", number=repeat_times)print(f"run in python: {t1}s")t2 = timeit.timeit(stmt="primes.primes(1000)",setup="import primes", number=repeat_times)print(f"run cython with cdef: {t2}s")t3 = timeit.timeit(stmt="primes_jit(1000)",setup="from __main__ import primes_jit", number=repeat_times)print(f"run in python with numba jit: {t3}s")t4 = timeit.timeit(stmt="primes_python.primes_python(1000)",setup="import primes_python", number=repeat_times)print(f"run cython without cdef: {t4}s")运行一下,得到的结果如下:run in python: 28.519053545829927s
run cython with cdef: 1.6289360376895452s
run in python with numba jit: 2.0565857326599577s
run cython without cdef: 13.221758278866588s


4. 测试一下pypy的结果,建立primes_pypy.py文件:

# primes_pypy.pyimport timeitdef primes_python(nb_primes):p = []n = 2while len(p) < nb_primes:# Is n prime?for i in p:if n % i == 0:break# If no break occurred in the loopelse:p.append(n)n += 1return pif __name__ == "__main__":repeat_times = 1000t1 = timeit.timeit(stmt="primes_python(1000)",setup="from __main__ import primes_python", number=repeat_times)print(f"run in pypy: {t1}s")


使用pypy3 primes_pypy.py 运行文件, 得到结果如下:

run in pypy: 3.0445395345987682s
5.  nuitka的暂时没弄出来, 总体的运行结果如下:

run in python: 28.519053545829927s
run cython with cdef: 1.6289360376895452s
run in python with numba jit: 2.0565857326599577s
run cython without cdef: 13.221758278866588srun in pypy: 3.0445395345987682s


基本上jit的效果很明显,也不用改动python代码。

原文链接:https://blog.csdn.net/xiaozisheng2008_/article/details/85266511

这篇关于Ubuntu 18.04 LTS安装numba python性能优化的比较:numba,pypy, cython的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/562745

相关文章

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON:

Python操作PDF文档的主流库使用指南

《Python操作PDF文档的主流库使用指南》PDF因其跨平台、格式固定的特性成为文档交换的标准,然而,由于其复杂的内部结构,程序化操作PDF一直是个挑战,本文主要为大家整理了Python操作PD... 目录一、 基础操作1.PyPDF2 (及其继任者 pypdf)2.PyMuPDF / fitz3.Fre

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

python运用requests模拟浏览器发送请求过程

《python运用requests模拟浏览器发送请求过程》模拟浏览器请求可选用requests处理静态内容,selenium应对动态页面,playwright支持高级自动化,设置代理和超时参数,根据需... 目录使用requests库模拟浏览器请求使用selenium自动化浏览器操作使用playwright

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

Python极速搭建局域网文件共享服务器完整指南

《Python极速搭建局域网文件共享服务器完整指南》在办公室或家庭局域网中快速共享文件时,许多人会选择第三方工具或云存储服务,但这些方案往往存在隐私泄露风险或需要复杂配置,下面我们就来看看如何使用Py... 目录一、android基础版:HTTP文件共享的魔法命令1. 一行代码启动HTTP服务器2. 关键参

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

Python获取浏览器Cookies的四种方式小结

《Python获取浏览器Cookies的四种方式小结》在进行Web应用程序测试和开发时,获取浏览器Cookies是一项重要任务,本文我们介绍四种用Python获取浏览器Cookies的方式,具有一定的... 目录什么是 Cookie?1.使用Selenium库获取浏览器Cookies2.使用浏览器开发者工具

Linux系统中查询JDK安装目录的几种常用方法

《Linux系统中查询JDK安装目录的几种常用方法》:本文主要介绍Linux系统中查询JDK安装目录的几种常用方法,方法分别是通过update-alternatives、Java命令、环境变量及目... 目录方法 1:通过update-alternatives查询(推荐)方法 2:检查所有已安装的 JDK方