【数值分析】线性方程组的迭代方法,jacobi,高斯赛德尔GS,SOR

本文主要是介绍【数值分析】线性方程组的迭代方法,jacobi,高斯赛德尔GS,SOR,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

线性方程组的迭代解法

2024年1月1日
#analysis


文章目录

  • 线性方程组的迭代解法
    • 基本迭代法
        • Jacobi迭代
        • 高斯-赛德尔(GS)迭代
        • SOR迭代
    • 迭代的收敛性分析和误差估计
    • 下链


基本迭代法

Jacobi迭代

A = D − L − U A=D-L-U A=DLU
D x ( k + 1 ) = ( L + U ) x ( k ) + b Dx^{(k+1)}=(L+U)x^{(k)}+b Dx(k+1)=(L+U)x(k)+b
B j = D − 1 ( L + U ) = I − D − 1 A B_j =D^{-1}(L+U)=I-D^{-1}A Bj=D1(L+U)=ID1A
matlab实现

%% 迭代法例子
A = [2 -1 0;-1 3 -1;0 -1 2];
b = [1 8 -5]';
[x,i] = jacobi(A,b,1e-5,10000)%% Jacobi迭代
% 输入矩阵A,向量b,精度,最大迭代次数
% 输出解向量x,迭代次数i
function [x,i] = jacobi(A,b,eps,max_iter)D = diag(diag(A));L = D-tril(A);U = D-triu(A);x = zeros(size(b)); %!for i = 1:max_iterx = D\(b+L*x+U*x);err = norm(b-A*x)/norm(b); %!if err<epsbreak;endend
end
高斯-赛德尔(GS)迭代

A = D − L − U A=D-L-U A=DLU
( D − L ) x ( k + 1 ) = U x ( k ) + b (D-L)x^{(k+1)}=Ux^{(k)}+b (DL)x(k+1)=Ux(k)+b
B g s = ( D − L ) − 1 U = I − ( D − L ) − 1 A B_{gs} =(D-L)^{-1}U=I-(D-L)^{-1}A Bgs=(DL)1U=I(DL)1A
matlab实现

%% 迭代法例子
A = [2 -1 0;-1 3 -1;0 -1 2];
b = [1 8 -5]';
[x,i] = GS(A,b,1e-5,10000)%% GS迭代
% 输入矩阵A,向量b,精度,最大迭代次数
% 输出解向量x,迭代次数i
function [x,i] = GS(A,b,eps,max_iter)D = diag(diag(A));L = D-tril(A);U = D-triu(A);x = zeros(size(b)); %!for i = 1:max_iterx = (D-L)\(b+U*x);err = norm(b-A*x)/norm(b); %!if err<epsbreak;endend
end
SOR迭代

A = D − L − U A=D-L-U A=DLU
x ( k + 1 ) = x ( k ) + ω D − 1 ( L x ( k + 1 ) + U x ( k ) − D x ( k ) + b ) x^{(k+1)}=x^{(k)}+ \omega D^{-1}(Lx^{(k+1)}+Ux^{(k)}-Dx^{(k)}+b) x(k+1)=x(k)+ωD1(Lx(k+1)+Ux(k)Dx(k)+b)
x ( k + 1 ) = ( D − ω L ) − 1 [ ( 1 − ω ) D + ω U ] x ( k ) + ω ( D − ω L ) − 1 b x^{(k+1)}= (D- \omega L)^{-1}[(1- \omega )D+ \omega U]x^{(k)} + \omega (D- \omega L)^{-1}b x(k+1)=(DωL)1[(1ω)D+ωU]x(k)+ω(DωL)1b
B S O R = ( D − ω L ) − 1 [ ( 1 − ω ) D + ω U ] B_{SOR} = (D- \omega L)^{-1}[(1- \omega )D+ \omega U] BSOR=(DωL)1[(1ω)D+ωU]
matlab实现

%% 迭代法例子
A = [2 -1 0;-1 3 -1;0 -1 2];
b = [1 8 -5]';
[x,i] = SOR(A,b,1e-5,10000,1.1)%% SOR迭代
% 输入矩阵A,向量b,精度,最大迭代次数
% 输出解向量x,迭代次数i
function [x,i] = SOR(A,b,eps,max_iter,w)D = diag(diag(A));L = D-tril(A);U = D-triu(A);x = zeros(size(b)); %!for i = 1:max_iterx = (D-w*L)\(((1-w)*D+w*U)*x + w*b);err = norm(b-A*x)/norm(b); %!if err<epsbreak;endend
end

迭代的收敛性分析和误差估计

排列矩阵 每行每列仅有唯一非零元的方阵。
可约矩阵 A {A} A n {n} n 阶矩阵, n ≥ 2 {n\ge2} n2 ,如果存在 n {n} n 阶排列矩阵 P {P} P ,使得
P T A P = [ A 11 A 12 0 A 22 ] P^ \mathrm TAP= \begin{bmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{bmatrix} PTAP=[A110A12A22]
其中 A 11 {A_{11}} A11 A 22 {A_{22}} A22 分别为 r {r} r 阶和 n − r {n-r} nr 阶方阵, 1 ≤ r ≤ n − 1 {1\le r\le n-1} 1rn1 ,则称 A {A} A 为可约矩阵,否则为不可约矩阵。
对角占优矩阵 A {A} A n {n} n 阶矩阵,满足
∣ a i i ∣ ≥ ∑ j = 1 , j ≠ i n ∣ a i j ∣ , i = 1 , 2 , ⋯ , n | a_{ii} |\ge \sum_{j=1,j\ne i}^{ n}|a_{ij}| \,\,,\,\, i=1,2,\cdots,n aiij=1,j=inaij,i=1,2,,n
即对角元素大于等于该行其他元素的和,如果 A {A} A 中至少有一行使不等式严格成立,则称A为弱对角占优矩阵,如果每一行都使不等式严格成立,则称 A {A} A 为严格行对角占优矩阵。

一些定理

  • 如果 n {n} n 阶矩阵 A {A} A 是严格对角占优矩阵或不可约弱对角占优矩阵,则 A {A} A 是非奇异矩阵
  • n {n} n 阶矩阵 A {A} A k {k} k 次幂 A k → 0 {A^k\to0} Ak0 的充要条件为谱半径 ρ ( A ) < 1 {\rho (A)<1} ρ(A)<1
  • 任一矩阵 A {A} A 的谱半径均不大于 A {A } A 的任一与某一向量范数相容的矩阵范数,即 ρ ( A ) ≤ ∣ ∣ A ∣ ∣ {\rho(A)\le ||A||} ρ(A)∣∣A∣∣
  • 对于迭代格式
    x ( k + 1 ) = B x ( k ) + g x^{(k+1)}=Bx^{(k)}+g x(k+1)=Bx(k)+g
    给定任意的初值 x ( 0 ) {x^{(0)}} x(0) ,有下列收敛结果和误差估计0
    1. 迭代格式收敛的充要条件为谱半径 ρ ( B ) < 1 {\rho(B)<1} ρ(B)<1
    2. 如果 ∣ ∣ B ∣ ∣ < 1 {||B||<1} ∣∣B∣∣<1 ,则有估计
      ∣ ∣ x ( k ) − x ∗ ∣ ∣ ≤ ∣ ∣ B ∣ ∣ k 1 − ∣ ∣ B ∣ ∣ ∣ ∣ x ( 1 ) − x ( 0 ) ∣ ∣ ∣ ∣ x ( k ) − x ∗ ∣ ∣ ≤ ∣ ∣ B ∣ ∣ 1 − ∣ ∣ B ∣ ∣ ∣ ∣ x ( k ) − x ( k − 1 ) ∣ ∣ \begin{align*} ||x^{(k)}-x ^{*} ||\le& \frac{||B||^k}{1-||B||}||x^{(1)}-x^{(0)}|| \\ \\ ||x^{(k)}-x ^{*} ||\le& \frac{||B||}{1-||B||}||x^{(k)}-x^{(k-1)}|| \end{align*} ∣∣x(k)x∣∣∣∣x(k)x∣∣1∣∣B∣∣∣∣Bk∣∣x(1)x(0)∣∣1∣∣B∣∣∣∣B∣∣∣∣x(k)x(k1)∣∣
  • A {A} A 是严格对角占优矩阵或不可约弱对角占优矩阵,则Jacobi迭代和GS迭代都收敛
  • A {A} A 对称正定,则Jacobi迭代收敛的充要条件为 2 D − A {2D-A} 2DA 也是对称正定矩阵
  • SOR迭代收敛的必要条件为 1 < ω < 2 {1< \omega <2} 1<ω<2
  • 系数矩阵 A {A} A 对称正定,则 0 < ω < 2 {0<\omega <2} 0<ω<2 时SOR迭代收敛

例题看同济《现代数值计算》习题6.6。


下链


这篇关于【数值分析】线性方程组的迭代方法,jacobi,高斯赛德尔GS,SOR的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/561717

相关文章

慢sql提前分析预警和动态sql替换-Mybatis-SQL

《慢sql提前分析预警和动态sql替换-Mybatis-SQL》为防止慢SQL问题而开发的MyBatis组件,该组件能够在开发、测试阶段自动分析SQL语句,并在出现慢SQL问题时通过Ducc配置实现动... 目录背景解决思路开源方案调研设计方案详细设计使用方法1、引入依赖jar包2、配置组件XML3、核心配

Java NoClassDefFoundError运行时错误分析解决

《JavaNoClassDefFoundError运行时错误分析解决》在Java开发中,NoClassDefFoundError是一种常见的运行时错误,它通常表明Java虚拟机在尝试加载一个类时未能... 目录前言一、问题分析二、报错原因三、解决思路检查类路径配置检查依赖库检查类文件调试类加载器问题四、常见

Java 中的 @SneakyThrows 注解使用方法(简化异常处理的利与弊)

《Java中的@SneakyThrows注解使用方法(简化异常处理的利与弊)》为了简化异常处理,Lombok提供了一个强大的注解@SneakyThrows,本文将详细介绍@SneakyThro... 目录1. @SneakyThrows 简介 1.1 什么是 Lombok?2. @SneakyThrows

Python中的Walrus运算符分析示例详解

《Python中的Walrus运算符分析示例详解》Python中的Walrus运算符(:=)是Python3.8引入的一个新特性,允许在表达式中同时赋值和返回值,它的核心作用是减少重复计算,提升代码简... 目录1. 在循环中避免重复计算2. 在条件判断中同时赋值变量3. 在列表推导式或字典推导式中简化逻辑

判断PyTorch是GPU版还是CPU版的方法小结

《判断PyTorch是GPU版还是CPU版的方法小结》PyTorch作为当前最流行的深度学习框架之一,支持在CPU和GPU(NVIDIACUDA)上运行,所以对于深度学习开发者来说,正确识别PyTor... 目录前言为什么需要区分GPU和CPU版本?性能差异硬件要求如何检查PyTorch版本?方法1:使用命

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Java中的工具类命名方法

《Java中的工具类命名方法》:本文主要介绍Java中的工具类究竟如何命名,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Java中的工具类究竟如何命名?先来几个例子几种命名方式的比较到底如何命名 ?总结Java中的工具类究竟如何命名?先来几个例子JD

Spring Security自定义身份认证的实现方法

《SpringSecurity自定义身份认证的实现方法》:本文主要介绍SpringSecurity自定义身份认证的实现方法,下面对SpringSecurity的这三种自定义身份认证进行详细讲解,... 目录1.内存身份认证(1)创建配置类(2)验证内存身份认证2.JDBC身份认证(1)数据准备 (2)配置依

python获取网页表格的多种方法汇总

《python获取网页表格的多种方法汇总》我们在网页上看到很多的表格,如果要获取里面的数据或者转化成其他格式,就需要将表格获取下来并进行整理,在Python中,获取网页表格的方法有多种,下面就跟随小编... 目录1. 使用Pandas的read_html2. 使用BeautifulSoup和pandas3.