【数值分析】线性方程组的迭代方法,jacobi,高斯赛德尔GS,SOR

本文主要是介绍【数值分析】线性方程组的迭代方法,jacobi,高斯赛德尔GS,SOR,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

线性方程组的迭代解法

2024年1月1日
#analysis


文章目录

  • 线性方程组的迭代解法
    • 基本迭代法
        • Jacobi迭代
        • 高斯-赛德尔(GS)迭代
        • SOR迭代
    • 迭代的收敛性分析和误差估计
    • 下链


基本迭代法

Jacobi迭代

A = D − L − U A=D-L-U A=DLU
D x ( k + 1 ) = ( L + U ) x ( k ) + b Dx^{(k+1)}=(L+U)x^{(k)}+b Dx(k+1)=(L+U)x(k)+b
B j = D − 1 ( L + U ) = I − D − 1 A B_j =D^{-1}(L+U)=I-D^{-1}A Bj=D1(L+U)=ID1A
matlab实现

%% 迭代法例子
A = [2 -1 0;-1 3 -1;0 -1 2];
b = [1 8 -5]';
[x,i] = jacobi(A,b,1e-5,10000)%% Jacobi迭代
% 输入矩阵A,向量b,精度,最大迭代次数
% 输出解向量x,迭代次数i
function [x,i] = jacobi(A,b,eps,max_iter)D = diag(diag(A));L = D-tril(A);U = D-triu(A);x = zeros(size(b)); %!for i = 1:max_iterx = D\(b+L*x+U*x);err = norm(b-A*x)/norm(b); %!if err<epsbreak;endend
end
高斯-赛德尔(GS)迭代

A = D − L − U A=D-L-U A=DLU
( D − L ) x ( k + 1 ) = U x ( k ) + b (D-L)x^{(k+1)}=Ux^{(k)}+b (DL)x(k+1)=Ux(k)+b
B g s = ( D − L ) − 1 U = I − ( D − L ) − 1 A B_{gs} =(D-L)^{-1}U=I-(D-L)^{-1}A Bgs=(DL)1U=I(DL)1A
matlab实现

%% 迭代法例子
A = [2 -1 0;-1 3 -1;0 -1 2];
b = [1 8 -5]';
[x,i] = GS(A,b,1e-5,10000)%% GS迭代
% 输入矩阵A,向量b,精度,最大迭代次数
% 输出解向量x,迭代次数i
function [x,i] = GS(A,b,eps,max_iter)D = diag(diag(A));L = D-tril(A);U = D-triu(A);x = zeros(size(b)); %!for i = 1:max_iterx = (D-L)\(b+U*x);err = norm(b-A*x)/norm(b); %!if err<epsbreak;endend
end
SOR迭代

A = D − L − U A=D-L-U A=DLU
x ( k + 1 ) = x ( k ) + ω D − 1 ( L x ( k + 1 ) + U x ( k ) − D x ( k ) + b ) x^{(k+1)}=x^{(k)}+ \omega D^{-1}(Lx^{(k+1)}+Ux^{(k)}-Dx^{(k)}+b) x(k+1)=x(k)+ωD1(Lx(k+1)+Ux(k)Dx(k)+b)
x ( k + 1 ) = ( D − ω L ) − 1 [ ( 1 − ω ) D + ω U ] x ( k ) + ω ( D − ω L ) − 1 b x^{(k+1)}= (D- \omega L)^{-1}[(1- \omega )D+ \omega U]x^{(k)} + \omega (D- \omega L)^{-1}b x(k+1)=(DωL)1[(1ω)D+ωU]x(k)+ω(DωL)1b
B S O R = ( D − ω L ) − 1 [ ( 1 − ω ) D + ω U ] B_{SOR} = (D- \omega L)^{-1}[(1- \omega )D+ \omega U] BSOR=(DωL)1[(1ω)D+ωU]
matlab实现

%% 迭代法例子
A = [2 -1 0;-1 3 -1;0 -1 2];
b = [1 8 -5]';
[x,i] = SOR(A,b,1e-5,10000,1.1)%% SOR迭代
% 输入矩阵A,向量b,精度,最大迭代次数
% 输出解向量x,迭代次数i
function [x,i] = SOR(A,b,eps,max_iter,w)D = diag(diag(A));L = D-tril(A);U = D-triu(A);x = zeros(size(b)); %!for i = 1:max_iterx = (D-w*L)\(((1-w)*D+w*U)*x + w*b);err = norm(b-A*x)/norm(b); %!if err<epsbreak;endend
end

迭代的收敛性分析和误差估计

排列矩阵 每行每列仅有唯一非零元的方阵。
可约矩阵 A {A} A n {n} n 阶矩阵, n ≥ 2 {n\ge2} n2 ,如果存在 n {n} n 阶排列矩阵 P {P} P ,使得
P T A P = [ A 11 A 12 0 A 22 ] P^ \mathrm TAP= \begin{bmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{bmatrix} PTAP=[A110A12A22]
其中 A 11 {A_{11}} A11 A 22 {A_{22}} A22 分别为 r {r} r 阶和 n − r {n-r} nr 阶方阵, 1 ≤ r ≤ n − 1 {1\le r\le n-1} 1rn1 ,则称 A {A} A 为可约矩阵,否则为不可约矩阵。
对角占优矩阵 A {A} A n {n} n 阶矩阵,满足
∣ a i i ∣ ≥ ∑ j = 1 , j ≠ i n ∣ a i j ∣ , i = 1 , 2 , ⋯ , n | a_{ii} |\ge \sum_{j=1,j\ne i}^{ n}|a_{ij}| \,\,,\,\, i=1,2,\cdots,n aiij=1,j=inaij,i=1,2,,n
即对角元素大于等于该行其他元素的和,如果 A {A} A 中至少有一行使不等式严格成立,则称A为弱对角占优矩阵,如果每一行都使不等式严格成立,则称 A {A} A 为严格行对角占优矩阵。

一些定理

  • 如果 n {n} n 阶矩阵 A {A} A 是严格对角占优矩阵或不可约弱对角占优矩阵,则 A {A} A 是非奇异矩阵
  • n {n} n 阶矩阵 A {A} A k {k} k 次幂 A k → 0 {A^k\to0} Ak0 的充要条件为谱半径 ρ ( A ) < 1 {\rho (A)<1} ρ(A)<1
  • 任一矩阵 A {A} A 的谱半径均不大于 A {A } A 的任一与某一向量范数相容的矩阵范数,即 ρ ( A ) ≤ ∣ ∣ A ∣ ∣ {\rho(A)\le ||A||} ρ(A)∣∣A∣∣
  • 对于迭代格式
    x ( k + 1 ) = B x ( k ) + g x^{(k+1)}=Bx^{(k)}+g x(k+1)=Bx(k)+g
    给定任意的初值 x ( 0 ) {x^{(0)}} x(0) ,有下列收敛结果和误差估计0
    1. 迭代格式收敛的充要条件为谱半径 ρ ( B ) < 1 {\rho(B)<1} ρ(B)<1
    2. 如果 ∣ ∣ B ∣ ∣ < 1 {||B||<1} ∣∣B∣∣<1 ,则有估计
      ∣ ∣ x ( k ) − x ∗ ∣ ∣ ≤ ∣ ∣ B ∣ ∣ k 1 − ∣ ∣ B ∣ ∣ ∣ ∣ x ( 1 ) − x ( 0 ) ∣ ∣ ∣ ∣ x ( k ) − x ∗ ∣ ∣ ≤ ∣ ∣ B ∣ ∣ 1 − ∣ ∣ B ∣ ∣ ∣ ∣ x ( k ) − x ( k − 1 ) ∣ ∣ \begin{align*} ||x^{(k)}-x ^{*} ||\le& \frac{||B||^k}{1-||B||}||x^{(1)}-x^{(0)}|| \\ \\ ||x^{(k)}-x ^{*} ||\le& \frac{||B||}{1-||B||}||x^{(k)}-x^{(k-1)}|| \end{align*} ∣∣x(k)x∣∣∣∣x(k)x∣∣1∣∣B∣∣∣∣Bk∣∣x(1)x(0)∣∣1∣∣B∣∣∣∣B∣∣∣∣x(k)x(k1)∣∣
  • A {A} A 是严格对角占优矩阵或不可约弱对角占优矩阵,则Jacobi迭代和GS迭代都收敛
  • A {A} A 对称正定,则Jacobi迭代收敛的充要条件为 2 D − A {2D-A} 2DA 也是对称正定矩阵
  • SOR迭代收敛的必要条件为 1 < ω < 2 {1< \omega <2} 1<ω<2
  • 系数矩阵 A {A} A 对称正定,则 0 < ω < 2 {0<\omega <2} 0<ω<2 时SOR迭代收敛

例题看同济《现代数值计算》习题6.6。


下链


这篇关于【数值分析】线性方程组的迭代方法,jacobi,高斯赛德尔GS,SOR的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/561717

相关文章

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

Linux系统中查询JDK安装目录的几种常用方法

《Linux系统中查询JDK安装目录的几种常用方法》:本文主要介绍Linux系统中查询JDK安装目录的几种常用方法,方法分别是通过update-alternatives、Java命令、环境变量及目... 目录方法 1:通过update-alternatives查询(推荐)方法 2:检查所有已安装的 JDK方

SQL Server安装时候没有中文选项的解决方法

《SQLServer安装时候没有中文选项的解决方法》用户安装SQLServer时界面全英文,无中文选项,通过修改安装设置中的国家或地区为中文中国,重启安装程序后界面恢复中文,解决了问题,对SQLSe... 你是不是在安装SQL Server时候发现安装界面和别人不同,并且无论如何都没有中文选项?这个问题也

Java Thread中join方法使用举例详解

《JavaThread中join方法使用举例详解》JavaThread中join()方法主要是让调用改方法的thread完成run方法里面的东西后,在执行join()方法后面的代码,这篇文章主要介绍... 目录前言1.join()方法的定义和作用2.join()方法的三个重载版本3.join()方法的工作原

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

Spring Boot从main方法到内嵌Tomcat的全过程(自动化流程)

《SpringBoot从main方法到内嵌Tomcat的全过程(自动化流程)》SpringBoot启动始于main方法,创建SpringApplication实例,初始化上下文,准备环境,刷新容器并... 目录1. 入口:main方法2. SpringApplication初始化2.1 构造阶段3. 运行阶