【数值分析】线性方程组的迭代方法,jacobi,高斯赛德尔GS,SOR

本文主要是介绍【数值分析】线性方程组的迭代方法,jacobi,高斯赛德尔GS,SOR,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

线性方程组的迭代解法

2024年1月1日
#analysis


文章目录

  • 线性方程组的迭代解法
    • 基本迭代法
        • Jacobi迭代
        • 高斯-赛德尔(GS)迭代
        • SOR迭代
    • 迭代的收敛性分析和误差估计
    • 下链


基本迭代法

Jacobi迭代

A = D − L − U A=D-L-U A=DLU
D x ( k + 1 ) = ( L + U ) x ( k ) + b Dx^{(k+1)}=(L+U)x^{(k)}+b Dx(k+1)=(L+U)x(k)+b
B j = D − 1 ( L + U ) = I − D − 1 A B_j =D^{-1}(L+U)=I-D^{-1}A Bj=D1(L+U)=ID1A
matlab实现

%% 迭代法例子
A = [2 -1 0;-1 3 -1;0 -1 2];
b = [1 8 -5]';
[x,i] = jacobi(A,b,1e-5,10000)%% Jacobi迭代
% 输入矩阵A,向量b,精度,最大迭代次数
% 输出解向量x,迭代次数i
function [x,i] = jacobi(A,b,eps,max_iter)D = diag(diag(A));L = D-tril(A);U = D-triu(A);x = zeros(size(b)); %!for i = 1:max_iterx = D\(b+L*x+U*x);err = norm(b-A*x)/norm(b); %!if err<epsbreak;endend
end
高斯-赛德尔(GS)迭代

A = D − L − U A=D-L-U A=DLU
( D − L ) x ( k + 1 ) = U x ( k ) + b (D-L)x^{(k+1)}=Ux^{(k)}+b (DL)x(k+1)=Ux(k)+b
B g s = ( D − L ) − 1 U = I − ( D − L ) − 1 A B_{gs} =(D-L)^{-1}U=I-(D-L)^{-1}A Bgs=(DL)1U=I(DL)1A
matlab实现

%% 迭代法例子
A = [2 -1 0;-1 3 -1;0 -1 2];
b = [1 8 -5]';
[x,i] = GS(A,b,1e-5,10000)%% GS迭代
% 输入矩阵A,向量b,精度,最大迭代次数
% 输出解向量x,迭代次数i
function [x,i] = GS(A,b,eps,max_iter)D = diag(diag(A));L = D-tril(A);U = D-triu(A);x = zeros(size(b)); %!for i = 1:max_iterx = (D-L)\(b+U*x);err = norm(b-A*x)/norm(b); %!if err<epsbreak;endend
end
SOR迭代

A = D − L − U A=D-L-U A=DLU
x ( k + 1 ) = x ( k ) + ω D − 1 ( L x ( k + 1 ) + U x ( k ) − D x ( k ) + b ) x^{(k+1)}=x^{(k)}+ \omega D^{-1}(Lx^{(k+1)}+Ux^{(k)}-Dx^{(k)}+b) x(k+1)=x(k)+ωD1(Lx(k+1)+Ux(k)Dx(k)+b)
x ( k + 1 ) = ( D − ω L ) − 1 [ ( 1 − ω ) D + ω U ] x ( k ) + ω ( D − ω L ) − 1 b x^{(k+1)}= (D- \omega L)^{-1}[(1- \omega )D+ \omega U]x^{(k)} + \omega (D- \omega L)^{-1}b x(k+1)=(DωL)1[(1ω)D+ωU]x(k)+ω(DωL)1b
B S O R = ( D − ω L ) − 1 [ ( 1 − ω ) D + ω U ] B_{SOR} = (D- \omega L)^{-1}[(1- \omega )D+ \omega U] BSOR=(DωL)1[(1ω)D+ωU]
matlab实现

%% 迭代法例子
A = [2 -1 0;-1 3 -1;0 -1 2];
b = [1 8 -5]';
[x,i] = SOR(A,b,1e-5,10000,1.1)%% SOR迭代
% 输入矩阵A,向量b,精度,最大迭代次数
% 输出解向量x,迭代次数i
function [x,i] = SOR(A,b,eps,max_iter,w)D = diag(diag(A));L = D-tril(A);U = D-triu(A);x = zeros(size(b)); %!for i = 1:max_iterx = (D-w*L)\(((1-w)*D+w*U)*x + w*b);err = norm(b-A*x)/norm(b); %!if err<epsbreak;endend
end

迭代的收敛性分析和误差估计

排列矩阵 每行每列仅有唯一非零元的方阵。
可约矩阵 A {A} A n {n} n 阶矩阵, n ≥ 2 {n\ge2} n2 ,如果存在 n {n} n 阶排列矩阵 P {P} P ,使得
P T A P = [ A 11 A 12 0 A 22 ] P^ \mathrm TAP= \begin{bmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{bmatrix} PTAP=[A110A12A22]
其中 A 11 {A_{11}} A11 A 22 {A_{22}} A22 分别为 r {r} r 阶和 n − r {n-r} nr 阶方阵, 1 ≤ r ≤ n − 1 {1\le r\le n-1} 1rn1 ,则称 A {A} A 为可约矩阵,否则为不可约矩阵。
对角占优矩阵 A {A} A n {n} n 阶矩阵,满足
∣ a i i ∣ ≥ ∑ j = 1 , j ≠ i n ∣ a i j ∣ , i = 1 , 2 , ⋯ , n | a_{ii} |\ge \sum_{j=1,j\ne i}^{ n}|a_{ij}| \,\,,\,\, i=1,2,\cdots,n aiij=1,j=inaij,i=1,2,,n
即对角元素大于等于该行其他元素的和,如果 A {A} A 中至少有一行使不等式严格成立,则称A为弱对角占优矩阵,如果每一行都使不等式严格成立,则称 A {A} A 为严格行对角占优矩阵。

一些定理

  • 如果 n {n} n 阶矩阵 A {A} A 是严格对角占优矩阵或不可约弱对角占优矩阵,则 A {A} A 是非奇异矩阵
  • n {n} n 阶矩阵 A {A} A k {k} k 次幂 A k → 0 {A^k\to0} Ak0 的充要条件为谱半径 ρ ( A ) < 1 {\rho (A)<1} ρ(A)<1
  • 任一矩阵 A {A} A 的谱半径均不大于 A {A } A 的任一与某一向量范数相容的矩阵范数,即 ρ ( A ) ≤ ∣ ∣ A ∣ ∣ {\rho(A)\le ||A||} ρ(A)∣∣A∣∣
  • 对于迭代格式
    x ( k + 1 ) = B x ( k ) + g x^{(k+1)}=Bx^{(k)}+g x(k+1)=Bx(k)+g
    给定任意的初值 x ( 0 ) {x^{(0)}} x(0) ,有下列收敛结果和误差估计0
    1. 迭代格式收敛的充要条件为谱半径 ρ ( B ) < 1 {\rho(B)<1} ρ(B)<1
    2. 如果 ∣ ∣ B ∣ ∣ < 1 {||B||<1} ∣∣B∣∣<1 ,则有估计
      ∣ ∣ x ( k ) − x ∗ ∣ ∣ ≤ ∣ ∣ B ∣ ∣ k 1 − ∣ ∣ B ∣ ∣ ∣ ∣ x ( 1 ) − x ( 0 ) ∣ ∣ ∣ ∣ x ( k ) − x ∗ ∣ ∣ ≤ ∣ ∣ B ∣ ∣ 1 − ∣ ∣ B ∣ ∣ ∣ ∣ x ( k ) − x ( k − 1 ) ∣ ∣ \begin{align*} ||x^{(k)}-x ^{*} ||\le& \frac{||B||^k}{1-||B||}||x^{(1)}-x^{(0)}|| \\ \\ ||x^{(k)}-x ^{*} ||\le& \frac{||B||}{1-||B||}||x^{(k)}-x^{(k-1)}|| \end{align*} ∣∣x(k)x∣∣∣∣x(k)x∣∣1∣∣B∣∣∣∣Bk∣∣x(1)x(0)∣∣1∣∣B∣∣∣∣B∣∣∣∣x(k)x(k1)∣∣
  • A {A} A 是严格对角占优矩阵或不可约弱对角占优矩阵,则Jacobi迭代和GS迭代都收敛
  • A {A} A 对称正定,则Jacobi迭代收敛的充要条件为 2 D − A {2D-A} 2DA 也是对称正定矩阵
  • SOR迭代收敛的必要条件为 1 < ω < 2 {1< \omega <2} 1<ω<2
  • 系数矩阵 A {A} A 对称正定,则 0 < ω < 2 {0<\omega <2} 0<ω<2 时SOR迭代收敛

例题看同济《现代数值计算》习题6.6。


下链


这篇关于【数值分析】线性方程组的迭代方法,jacobi,高斯赛德尔GS,SOR的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/561717

相关文章

关于MyISAM和InnoDB对比分析

《关于MyISAM和InnoDB对比分析》:本文主要介绍关于MyISAM和InnoDB对比分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录开篇:从交通规则看存储引擎选择理解存储引擎的基本概念技术原理对比1. 事务支持:ACID的守护者2. 锁机制:并发控制的艺

SpringBoot中使用Flux实现流式返回的方法小结

《SpringBoot中使用Flux实现流式返回的方法小结》文章介绍流式返回(StreamingResponse)在SpringBoot中通过Flux实现,优势包括提升用户体验、降低内存消耗、支持长连... 目录背景流式返回的核心概念与优势1. 提升用户体验2. 降低内存消耗3. 支持长连接与实时通信在Sp

Conda虚拟环境的复制和迁移的四种方法实现

《Conda虚拟环境的复制和迁移的四种方法实现》本文主要介绍了Conda虚拟环境的复制和迁移的四种方法实现,包括requirements.txt,environment.yml,conda-pack,... 目录在本机复制Conda虚拟环境相同操作系统之间复制环境方法一:requirements.txt方法

Nginx 重写与重定向配置方法

《Nginx重写与重定向配置方法》Nginx重写与重定向区别:重写修改路径(客户端无感知),重定向跳转新URL(客户端感知),try_files检查文件/目录存在性,return301直接返回永久重... 目录一.try_files指令二.return指令三.rewrite指令区分重写与重定向重写: 请求

MySQL 打开binlog日志的方法及注意事项

《MySQL打开binlog日志的方法及注意事项》本文给大家介绍MySQL打开binlog日志的方法及注意事项,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要... 目录一、默认状态二、如何检查 binlog 状态三、如何开启 binlog3.1 临时开启(重启后失效)

Python中提取文件名扩展名的多种方法实现

《Python中提取文件名扩展名的多种方法实现》在Python编程中,经常会遇到需要从文件名中提取扩展名的场景,Python提供了多种方法来实现这一功能,不同方法适用于不同的场景和需求,包括os.pa... 目录技术背景实现步骤方法一:使用os.path.splitext方法二:使用pathlib模块方法三

Python打印对象所有属性和值的方法小结

《Python打印对象所有属性和值的方法小结》在Python开发过程中,调试代码时经常需要查看对象的当前状态,也就是对象的所有属性和对应的值,然而,Python并没有像PHP的print_r那样直接提... 目录python中打印对象所有属性和值的方法实现步骤1. 使用vars()和pprint()2. 使

CSS实现元素撑满剩余空间的五种方法

《CSS实现元素撑满剩余空间的五种方法》在日常开发中,我们经常需要让某个元素占据容器的剩余空间,本文将介绍5种不同的方法来实现这个需求,并分析各种方法的优缺点,感兴趣的朋友一起看看吧... css实现元素撑满剩余空间的5种方法 在日常开发中,我们经常需要让某个元素占据容器的剩余空间。这是一个常见的布局需求

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

Maven 配置中的 <mirror>绕过 HTTP 阻断机制的方法

《Maven配置中的<mirror>绕过HTTP阻断机制的方法》:本文主要介绍Maven配置中的<mirror>绕过HTTP阻断机制的方法,本文给大家分享问题原因及解决方案,感兴趣的朋友一... 目录一、问题场景:升级 Maven 后构建失败二、解决方案:通过 <mirror> 配置覆盖默认行为1. 配置示