AIStudio扫描王实现与原理详解

2024-01-01 23:30

本文主要是介绍AIStudio扫描王实现与原理详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

★★★ 本文源自AI Studio社区精品项目,【点击此处】查看更多精品内容 >>>


AIStudio扫描王实现与原理详解

一、前言

  大家经常有需要使用扫描件的时候,如果是要求不太高的场景,我们通常会使用手机拍照,再经过一些APP应用的处理,就生成了扫描件。但是,通常会有广告,并且一些功能是收费的,那么我们有没有其他的办法实现这些功能呢?下面本项目将展示如何实现。

二、代码与原理

  只需要将图像加载到相应的代码中,无需任何应用程序即可在几秒钟内获得输出。这个代码可以通过Numpy和OpenCV基本函数来实现。示例图片如图所示。

  首先,我们需要导入库函数;其次使用滤波函数将阴影部分去除;最后输出需要的图像文件。那么什么是图像滤波呢?下面简单介绍一下图片滤波。

  图像滤波,即在尽量保留图像细节特征的条件下对目标图像的噪声进行抑制,是图像预处理中不可缺少的操作,其处理效果的好坏将直接影响到后续图像处理和分析的有效性和可靠性[1]。

  图像滤波按图像域可分为两种类型:

  邻域滤波(Spatial Domain Filter),其本质是数字窗口上的数学运算。一般用于图像平滑、图像锐化、特征提取(如纹理测量、边缘检测)等,邻域滤波使用邻域算子——利用给定像素周围像素值以决定此像素最终输出的一种算子。邻域滤波方式又分为线性滤波和非线性滤波,其中线性滤波包括均值滤波、方框滤波和高斯滤波等,非线性滤波包括中值滤波和双边滤波等。

  频域滤波(Frequency Domain Filter),其本质是对像素频率的修改。一般用于降噪、重采样、图像压缩等。按图像频率滤除效果主要分为两种类型:低通滤波(滤除原图像的高频成分,即模糊图像边缘与细节)和高通滤波(滤除原图像的低频成分,即图像锐化)。

[1]图像滤波参考链接:https://blog.csdn.net/crossoverpptx/article/details/127307179

%matplotlib inlineimport cv2
import numpy as np
import matplotlib.pyplot as plt
2.1 最大滤波

  最大最小值滤波是一种比较保守的图像处理手段,与中值滤波类似,首先要排序周围像素和中心像
素值,然后将中心像素值与最小和最大像素值比较,如果比最小值小,则替换中心像素为最小值,
如果中心像素比最大值大,则替换中心像素为最大值。

  让我们假设我们有一定大小的图像I。我们编写的算法应该逐个遍历I的像素,并且对于每个像素(x,y),它必须找到该像素周围的邻域(大小为N x N的窗口)中的最大灰度值,并进行写入A中相应像素位置(x,y)的最大灰度值。所得图像A称为输入图像I的最大滤波图像。现在让我们通过代码来实现这个概念。

  1. max_filtering()函数接受输入图像和窗口大小N。
  2. 它最初在输入数组周围创建一个“墙”(带有-1的填充),当我们遍历边缘像素时会有所帮助。
  3. 然后,我们创建一个“ temp”变量,将计算出的最大值复制到其中。
  4. 然后,我们遍历该数组并围绕大小为N x N的当前像素创建一个窗口。
  5. 然后,我们使用“ amax()”函数在该窗口中计算最大值,并将该值写入temp数组。
  6. 我们将该临时数组复制到主数组A中,并将其作为输出返回。
  7. A是输入I的最大滤波图像。
def max_filtering(N, I_temp):wall = np.full((I_temp.shape[0]+(N//2)*2, I_temp.shape[1]+(N//2)*2), -1)wall[(N//2):wall.shape[0]-(N//2), (N//2):wall.shape[1]-(N//2)] = I_temp.copy()temp = np.full((I_temp.shape[0]+(N//2)*2, I_temp.shape[1]+(N//2)*2), -1)for y in range(0,wall.shape[0]):for x in range(0,wall.shape[1]):if wall[y,x]!=-1:window = wall[y-(N//2):y+(N//2)+1,x-(N//2):x+(N//2)+1]num = np.amax(window)temp[y,x] = numA = temp[(N//2):wall.shape[0]-(N//2), (N//2):wall.shape[1]-(N//2)].copy()return A
2.2 最小滤波

  最小滤波:此算法与最大滤波完全相同,但是我们没有找到附近的最大灰度值,而是在该像素周围的N x N邻域中找到了最小值,并将该最小灰度值写入B中的(x,y)。所得图像B称为图像I的经过最小滤波的图像,代码如下。

def min_filtering(N, A):wall_min = np.full((A.shape[0]+(N//2)*2, A.shape[1]+(N//2)*2), 300)wall_min[(N//2):wall_min.shape[0]-(N//2), (N//2):wall_min.shape[1]-(N//2)] = A.copy()temp_min = np.full((A.shape[0]+(N//2)*2, A.shape[1]+(N//2)*2), 300)for y in range(0,wall_min.shape[0]):for x in range(0,wall_min.shape[1]):if wall_min[y,x]!=300:window_min = wall_min[y-(N//2):y+(N//2)+1,x-(N//2):x+(N//2)+1]num_min = np.amin(window_min)temp_min[y,x] = num_minB = temp_min[(N//2):wall_min.shape[0]-(N//2), (N//2):wall_min.shape[1]-(N//2)].copy()return B

变量N(用于过滤的窗口大小)将根据图像中粒子或内容的大小进行更改。对于测试图像,选择大小N = 20。增强后的最终输出图像如下所示:

def background_subtraction(I, B):O = I - Bnorm_img = cv2.normalize(O, None, 0,255, norm_type=cv2.NORM_MINMAX)return norm_img

完整代码如下所示

%matplotlib inlineimport cv2
import numpy as np
import matplotlib.pyplot as pltdef max_filtering(N, I_temp):wall = np.full((I_temp.shape[0]+(N//2)*2, I_temp.shape[1]+(N//2)*2), -1)wall[(N//2):wall.shape[0]-(N//2), (N//2):wall.shape[1]-(N//2)] = I_temp.copy()temp = np.full((I_temp.shape[0]+(N//2)*2, I_temp.shape[1]+(N//2)*2), -1)for y in range(0,wall.shape[0]):for x in range(0,wall.shape[1]):if wall[y,x]!=-1:window = wall[y-(N//2):y+(N//2)+1,x-(N//2):x+(N//2)+1]num = np.amax(window)temp[y,x] = numA = temp[(N//2):wall.shape[0]-(N//2), (N//2):wall.shape[1]-(N//2)].copy()return Adef min_filtering(N, A):wall_min = np.full((A.shape[0]+(N//2)*2, A.shape[1]+(N//2)*2), 300)wall_min[(N//2):wall_min.shape[0]-(N//2), (N//2):wall_min.shape[1]-(N//2)] = A.copy()temp_min = np.full((A.shape[0]+(N//2)*2, A.shape[1]+(N//2)*2), 300)for y in range(0,wall_min.shape[0]):for x in range(0,wall_min.shape[1]):if wall_min[y,x]!=300:window_min = wall_min[y-(N//2):y+(N//2)+1,x-(N//2):x+(N//2)+1]num_min = np.amin(window_min)temp_min[y,x] = num_minB = temp_min[(N//2):wall_min.shape[0]-(N//2), (N//2):wall_min.shape[1]-(N//2)].copy()return Bdef background_subtraction(I, B):O = I - Bnorm_img = cv2.normalize(O, None, 0,255, norm_type=cv2.NORM_MINMAX)return norm_imgdef min_max_filtering(M, N, I):if M == 0:#max_filteringA = max_filtering(N, I)#min_filteringB = min_filtering(N, A)#subtractionnormalised_img = background_subtraction(I, B)elif M == 1:#min_filteringA = min_filtering(N, I)#max_filteringB = max_filtering(N, A)#subtractionnormalised_img = background_subtraction(I, B)return normalised_img
P = cv2.imread('Test_image.jpeg',0)
plt.imshow(P,cmap='gray')
plt.title("original image")
plt.show()

在这里插入图片描述

#We can edit the N and M values here for P and C images
O_P = min_max_filtering(M = 0, N = 20, I = P)#Display final output
plt.imshow(O_P, cmap = 'gray')
plt.title("Final output")
plt.show()

在这里插入图片描述

总结

  进行图片转换时,有两件事要注意。由于图像是灰度图像,如果图像背景较浅且对象较暗,则必须先执行最大滤波,然后再执行最小滤波。如果图像背景较暗且物体较亮,我们可以先执行最小滤波,然后再进行最大滤波。如果图像的背景较浅,我们要先执行最大过滤,这将为我们提供增强的背景,并将该最大过滤后的图像传递给最小过滤功能。

这篇关于AIStudio扫描王实现与原理详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/560793

相关文章

Java Spring 中的监听器Listener详解与实战教程

《JavaSpring中的监听器Listener详解与实战教程》Spring提供了多种监听器机制,可以用于监听应用生命周期、会话生命周期和请求处理过程中的事件,:本文主要介绍JavaSprin... 目录一、监听器的作用1.1 应用生命周期管理1.2 会话管理1.3 请求处理监控二、创建监听器2.1 Ser

maven中的maven-antrun-plugin插件示例详解

《maven中的maven-antrun-plugin插件示例详解》maven-antrun-plugin是Maven生态中一个强大的工具,尤其适合需要复用Ant脚本或实现复杂构建逻辑的场景... 目录1. 核心功能2. 典型使用场景3. 配置示例4. 关键配置项5. 优缺点分析6. 最佳实践7. 常见问题

C/C++中OpenCV 矩阵运算的实现

《C/C++中OpenCV矩阵运算的实现》本文主要介绍了C/C++中OpenCV矩阵运算的实现,包括基本算术运算(标量与矩阵)、矩阵乘法、转置、逆矩阵、行列式、迹、范数等操作,感兴趣的可以了解一下... 目录矩阵的创建与初始化创建矩阵访问矩阵元素基本的算术运算 ➕➖✖️➗矩阵与标量运算矩阵与矩阵运算 (逐元

C/C++的OpenCV 进行图像梯度提取的几种实现

《C/C++的OpenCV进行图像梯度提取的几种实现》本文主要介绍了C/C++的OpenCV进行图像梯度提取的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录预www.chinasem.cn备知识1. 图像加载与预处理2. Sobel 算子计算 X 和 Y

C/C++和OpenCV实现调用摄像头

《C/C++和OpenCV实现调用摄像头》本文主要介绍了C/C++和OpenCV实现调用摄像头,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录准备工作1. 打开摄像头2. 读取视频帧3. 显示视频帧4. 释放资源5. 获取和设置摄像头属性

JVisualVM之Java性能监控与调优利器详解

《JVisualVM之Java性能监控与调优利器详解》本文将详细介绍JVisualVM的使用方法,并结合实际案例展示如何利用它进行性能调优,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全... 目录1. JVisualVM简介2. JVisualVM的安装与启动2.1 启动JVisualVM2

c/c++的opencv图像金字塔缩放实现

《c/c++的opencv图像金字塔缩放实现》本文主要介绍了c/c++的opencv图像金字塔缩放实现,通过对原始图像进行连续的下采样或上采样操作,生成一系列不同分辨率的图像,具有一定的参考价值,感兴... 目录图像金字塔简介图像下采样 (cv::pyrDown)图像上采样 (cv::pyrUp)C++ O

c/c++的opencv实现图片膨胀

《c/c++的opencv实现图片膨胀》图像膨胀是形态学操作,通过结构元素扩张亮区填充孔洞、连接断开部分、加粗物体,OpenCV的cv::dilate函数实现该操作,本文就来介绍一下opencv图片... 目录什么是图像膨胀?结构元素 (KerChina编程nel)OpenCV 中的 cv::dilate() 函

Python使用FFmpeg实现高效音频格式转换工具

《Python使用FFmpeg实现高效音频格式转换工具》在数字音频处理领域,音频格式转换是一项基础但至关重要的功能,本文主要为大家介绍了Python如何使用FFmpeg实现强大功能的图形化音频转换工具... 目录概述功能详解软件效果展示主界面布局转换过程截图完成提示开发步骤详解1. 环境准备2. 项目功能结

SpringBoot使用ffmpeg实现视频压缩

《SpringBoot使用ffmpeg实现视频压缩》FFmpeg是一个开源的跨平台多媒体处理工具集,用于录制,转换,编辑和流式传输音频和视频,本文将使用ffmpeg实现视频压缩功能,有需要的可以参考... 目录核心功能1.格式转换2.编解码3.音视频处理4.流媒体支持5.滤镜(Filter)安装配置linu