【Python】akshare找到数据

2024-01-01 17:20
文章标签 python 数据 找到 akshare

本文主要是介绍【Python】akshare找到数据,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 akshare文档,这个akshare目前看比baostock更全,baostock没有etf数据,这边的文档也写的更清晰,可以参考着学一下

AKShare 股票数据 — AKShare 1.9.10 文档

1、行业成交情况 

import akshare as ak
# 查看当年当月的各行业成交情况,一般当年没有结束的情况下,不能选当年,只能选当月
stock_szse_sector_summary_df = ak.stock_szse_sector_summary(symbol="当月", date="202302")
print(stock_szse_sector_summary_df)

 

import akshare as ak
# 地区交易排序
stock_szse_area_summary_df = ak.stock_szse_area_summary(date="202203")
print(stock_szse_area_summary_df)

市场全貌 

import akshare as ak
# 上证全貌
stock_sse_summary_df = ak.stock_sse_summary()
# 深证原貌
stock_szse_summary_df = ak.stock_szse_summary(date="20200619")
print("上证:")
print(stock_sse_summary_df)
print("深证:")
print(stock_szse_summary_df)
import akshare as ak
# 查看股票的基本概况
stock_individual_info_em_df = ak.stock_individual_info_em(symbol="000001")
print(stock_individual_info_em_df)

不知道为啥运行drop_duplicateds()会报错,说是不mutable的不懂

# 通过ak.fund_etf_category_sina()接口获取ETF列表,代码如下:
# 获取etf的历史数据
import pandas as pd
import akshare as ak
code = pd.read_csv("\\.sina_etf_list.csv")
code = code['代码'].values.tolist()
lst = []
for etf_code in code:df = ak.fund_etf_hist_sina(symbol=etf_code)df['code'] = etf_codedf['date']=pd.to_datetime(df['date'])df.set_index('date',inplace=True)df = df.loc['2022/01/01' : '2023/03/13']lst.append(df)
final_data = pd.DataFrame(lst)
# final_data.drop_duplicates()
final_data.to_csv('\\etf-data.csv',encoding = 'utf-8')
print('finished')

用这个更合适,这个是前复权的数据

import akshare as akfund_etf_hist_em_df = ak.fund_etf_hist_em(symbol="513500", period="daily", start_date="20000101", end_date="20230201", adjust="qfq")
print(fund_etf_hist_em_df)

用这个更适合 

AKShare 公募基金数据 — AKShare 1.9.10 文档

关于extend,直接把二维列表变成一维列表;

 更改列的位置,注意一下,这里面为啥不能直接 用空的dataframe添加,我也不太明白,之后媒体那跑这个就行,只需要改一下字典中的数据

# 通过ak.fund_etf_category_sina()接口获取ETF列表,代码如下:
# 获取etf的历史数据
import pandas as pd
import akshare as ak
import datetime
import csv
fp = open(r'D:\test\daily_data.csv','a',newline = '')
etf = {'159740':'abv'}
dic = {"512660":"军工ETF","515030":"新能源车ETF","516150":"稀土ETF基金","516160":"新能源ETF","159755":"电池ETF","159865":"养殖ETF","159780":"双创ETF"}
stock = {'601688':'华泰证券','002100':'天康生物','601878':'浙商证券'}
# 获取日期
start_date=datetime.datetime.now()+datetime.timedelta(days=-1)
end_date=datetime.datetime.now()+datetime.timedelta(days=-1)
start = start_date.strftime('%Y%m%d')
end =end_date.strftime('%Y%m%d')
# lst = pd.DataFrame(data = None,columns = ['日期','开盘','收盘','最高','最低','成交量','成交额','振幅','涨跌幅','涨跌额','换手率','stock_code','code_name'])
lst = [['日期', 'stock_code', 'code_name','开盘', '收盘', '最高', '最低', '成交量', '成交额', '振幅', '涨跌幅', '涨跌额', '换手率']]
for code,code_name in stock.items():df = ak.stock_zh_a_hist(symbol=code, period="daily", start_date=start, end_date=end, adjust="qfq")df['stock_code']=codedf['code_name']= code_name
# 更改列的顺序,把姓名排在前面order = ['日期', 'stock_code', 'code_name','开盘', '收盘', '最高', '最低', '成交量', '成交额', '振幅', '涨跌幅', '涨跌额', '换手率']df = df[order]
#     print(df)df = df.values.tolist()lst.extend(df)
for code,code_name in dic.items():df1 = ak.fund_etf_hist_em(symbol= code, period="daily", start_date=start, end_date=end, adjust="qfq")df1['stock_code'] = codedf1['code_name']= code_nameorder = ['日期', 'stock_code', 'code_name','开盘', '收盘', '最高', '最低', '成交量', '成交额', '振幅', '涨跌幅', '涨跌额', '换手率']df1 = df1[order]df1 = df1.values.tolist()
#     extend可以把二维列表扩展成为一维列表,整个dataframe对象直接就是一个二维列表,
#     所以这里用append不对lst.extend(df1)
# # lst
writer = csv.writer(fp)
writer.writerows(lst)
fp.close()
print('finished!')

这篇关于【Python】akshare找到数据的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/559986

相关文章

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

Python包管理工具pip的升级指南

《Python包管理工具pip的升级指南》本文全面探讨Python包管理工具pip的升级策略,从基础升级方法到高级技巧,涵盖不同操作系统环境下的最佳实践,我们将深入分析pip的工作原理,介绍多种升级方... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中反转字符串的常见方法小结

《Python中反转字符串的常见方法小结》在Python中,字符串对象没有内置的反转方法,然而,在实际开发中,我们经常会遇到需要反转字符串的场景,比如处理回文字符串、文本加密等,因此,掌握如何在Pyt... 目录python中反转字符串的方法技术背景实现步骤1. 使用切片2. 使用 reversed() 函

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Python使用pip工具实现包自动更新的多种方法

《Python使用pip工具实现包自动更新的多种方法》本文深入探讨了使用Python的pip工具实现包自动更新的各种方法和技术,我们将从基础概念开始,逐步介绍手动更新方法、自动化脚本编写、结合CI/C... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核