oCPC实践录 | 目标ROI的出价与转化回传调控算法

2024-01-01 14:28

本文主要是介绍oCPC实践录 | 目标ROI的出价与转化回传调控算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这篇文章我们聊聊广告主在oCPC下,怎么调控自己的出价或者回传转化优化自己的ROI。

ROI是广告主最关心的指标了,根据oCPC出价的基本原理ocpc_bid = pcvr * given_cpa * k, 广告主在整个出价中有两个可以控制的变量来影响出价,一个是直接的given_cpa,另一个是通过回传转化进而影响pcvr。

在oCPC实践录 | oCPC转化的设计、选择、归因与成本设置(4)中我们聊过,调整出价和调整回传是不等价的,不在这里赘述了。

ROI我们先定义一下:ROI=变现收入/广告花费,当ROI>1时毛利是正的,赚钱;当ROI<1时毛利是负的,亏钱。现在广告主有一个目标ROI,我们定义为target_ROI。

广告主可以通过调整出价或者转化影响出价,进而决定最终的ROI。做这个控制有个非常重要前提假设:调高出价(或转化率)ROI下降,调低出价(或转化率)ROI上升。这个假设往往是不能够严格保证的,因为调高出价有可能会买到高价值的流量,ROI不一定会下降,反之调低出价有可能会失去高价值流量,ROI不一定会上升。类似的逻辑我们在大厂广告算法专家:oCPC产品策略设计与投放实践(下)中也提到过。

现在正常的平台都会开放一个marketing API接口,供广告主自动化操作广告账户,包含广告的出价。因此,借助于这个工具,广告主可以做实时的ROI控制。

我们可以实时预估或者计算广告的真实ROI数据real_ROI,又有一个目标ROI即target_ROI,那一个很简单的思路就是无模型控制算法PID了,这里的无模型是指不去探究系统运行的机理,直接根据real_ROI和target_ROI的偏差调整出价,使得real_ROI=target_ROI,具体的算法逻辑在oCPC实践录 | 随你千变万化,oCPC PID控制(1),oCPC实践录 | 随你千变万化,oCPC PID控制(2),oCPC实践录 | 随你千变万化,oCPC PID控制(3)中有介绍过,不再赘述。

有聪明的小伙伴就发现一个问题,平台侧不是有个k值吗?他们也在控制出价,也会影响到ROI,那怎么办呢?有两个方法:

第一个方法是广告主侧的ROI控制与平台侧的成本控制,都把对方看成是一种系统干扰。直白说就是:不考虑对方的作用。

第二个方法是广告主侧的ROI控制与平台侧的成本控制分离解耦,这就需要探究系统的运行机理,使用基于模型的控制算法。系统的运行机理是一个转化的真实变现价值我们是知道的,除以target_ROI就应该是转化出价了,因此广告主直接计算平均每个转化的变现价值/除以target_ROI,将其设置为given_CPA即可,剩下的事情就是平台侧的成本控制保证real_cpa=given_cpa, 两者是解耦的。这就非常依赖平台侧的成本控制了。

(二)

有一些广告主是通过代理投放广告的,出价是通过代理控制的。所以可以通过调整转化回传来影响成本控制和ROI了。

第一个思路仍然是无模型的控制算法(PID),直接根据real_ROI和target_ROI的偏差调整回传,使得real_ROI=target_ROI,同样,会面临预估与调整出价一样的问题,不再赘述。

另一个思路是有模型的控制算法。从回传侧看系统的运行机理时,ROI等于一个转化的变现价值除以given_cpa,因此说只有转化价值累积超过given_cpa * target_ROI时才应该回传一个转化,点到为止了哈。

(三)

之前笔者做ROI产品时发现存在严重掉量的问题,当时没有分析到原因,直到看到有做目标ROI的回传时,才意识到平台侧ROI产品的一些隐忧。之前ROI产品的设计都是针对每个流量下的用户价值进行调价,但有些广告主是将多个用户累积的价值当成一个转化回传的。如果按照原来的思路将每个用户(或者转化用户的价值)的价值都进行回传,这个值会很小,会严重影响用户LTV的建模,进而影响出价和量级。

这篇关于oCPC实践录 | 目标ROI的出价与转化回传调控算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/559529

相关文章

ShardingProxy读写分离之原理、配置与实践过程

《ShardingProxy读写分离之原理、配置与实践过程》ShardingProxy是ApacheShardingSphere的数据库中间件,通过三层架构实现读写分离,解决高并发场景下数据库性能瓶... 目录一、ShardingProxy技术定位与读写分离核心价值1.1 技术定位1.2 读写分离核心价值二

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

MySQL分库分表的实践示例

《MySQL分库分表的实践示例》MySQL分库分表适用于数据量大或并发压力高的场景,核心技术包括水平/垂直分片和分库,需应对分布式事务、跨库查询等挑战,通过中间件和解决方案实现,最佳实践为合理策略、备... 目录一、分库分表的触发条件1.1 数据量阈值1.2 并发压力二、分库分表的核心技术模块2.1 水平分

SpringBoot通过main方法启动web项目实践

《SpringBoot通过main方法启动web项目实践》SpringBoot通过SpringApplication.run()启动Web项目,自动推断应用类型,加载初始化器与监听器,配置Spring... 目录1. 启动入口:SpringApplication.run()2. SpringApplicat

Java整合Protocol Buffers实现高效数据序列化实践

《Java整合ProtocolBuffers实现高效数据序列化实践》ProtocolBuffers是Google开发的一种语言中立、平台中立、可扩展的结构化数据序列化机制,类似于XML但更小、更快... 目录一、Protocol Buffers简介1.1 什么是Protocol Buffers1.2 Pro

linux安装、更新、卸载anaconda实践

《linux安装、更新、卸载anaconda实践》Anaconda是基于conda的科学计算环境,集成1400+包及依赖,安装需下载脚本、接受协议、设置路径、配置环境变量,更新与卸载通过conda命令... 目录随意找一个目录下载安装脚本检查许可证协议,ENTER就可以安装完毕之后激活anaconda安装更

Android 缓存日志Logcat导出与分析最佳实践

《Android缓存日志Logcat导出与分析最佳实践》本文全面介绍AndroidLogcat缓存日志的导出与分析方法,涵盖按进程、缓冲区类型及日志级别过滤,自动化工具使用,常见问题解决方案和最佳实... 目录android 缓存日志(Logcat)导出与分析全攻略为什么要导出缓存日志?按需过滤导出1. 按

MySQL数据类型与表操作全指南( 从基础到高级实践)

《MySQL数据类型与表操作全指南(从基础到高级实践)》本文详解MySQL数据类型分类(数值、日期/时间、字符串)及表操作(创建、修改、维护),涵盖优化技巧如数据类型选择、备份、分区,强调规范设计与... 目录mysql数据类型详解数值类型日期时间类型字符串类型表操作全解析创建表修改表结构添加列修改列删除列

Python自定义异常的全面指南(入门到实践)

《Python自定义异常的全面指南(入门到实践)》想象你正在开发一个银行系统,用户转账时余额不足,如果直接抛出ValueError,调用方很难区分是金额格式错误还是余额不足,这正是Python自定义异... 目录引言:为什么需要自定义异常一、异常基础:先搞懂python的异常体系1.1 异常是什么?1.2

深入解析Java NIO在高并发场景下的性能优化实践指南

《深入解析JavaNIO在高并发场景下的性能优化实践指南》随着互联网业务不断演进,对高并发、低延时网络服务的需求日益增长,本文将深入解析JavaNIO在高并发场景下的性能优化方法,希望对大家有所帮助... 目录简介一、技术背景与应用场景二、核心原理深入分析2.1 Selector多路复用2.2 Buffer