【数值分析】LU分解解Ax=b,matlab自己编程实现

2024-01-01 14:04

本文主要是介绍【数值分析】LU分解解Ax=b,matlab自己编程实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

LU分解(直接三角分解,Doolittle分解)

A x = b , A = L U Ax=b \,\,,\,\, A=LU Ax=b,A=LU
{ L y = b U x = y \begin{cases} Ly=b \\ Ux=y \end{cases} {Ly=bUx=y
矩阵 L {L} L 的对角元素为 1 {1} 1 ,矩阵 U {U} U 的第一行和 A {A} A 相同。
步骤:
1. 矩阵 L 的对角元素为 1 ,矩阵 U 的第一行和 A 相同。 2. 迭代 , j = 1 , 2 , ⋯ n − 1 算 L 的第 j 列 , L i , j = A i , j − ∑ r = 1 j − 1 L i , r U r , j U j , j , i = j + 1 , j + 2 , ⋯ , n 算 U 的第 j + 1 行 , U j + 1 , k = A j + 1 , k − ∑ r = 1 j L j + 1 , r U r , k L j + 1 , j + 1 , k = j + 1 , j + 2 , ⋯ , n 3. 回代 , y i = b i − ∑ j = 1 i − 1 L i , j y j , i = 1 , 2 , ⋯ , n x i = y i − ∑ j = i + 1 n x j ⋅ U i , j U i , i , i = n , n − 1 , ⋯ , 1 \begin{align*} 1.& 矩阵 L 的对角元素为 1 ,矩阵U 的第一行和A相同。 \\ \\ 2. & 迭代 \,\,,\,\, j=1,2, \cdots n-1 \\ \\ &算L的第j列 \,\,,\,\, L_{i,j}= \frac{A_{i,j}- \sum_{r=1}^{j-1}L_{i,r}U_{r,j}}{U_{j,j}},i=j+1,j+2,\cdots ,n \\ \\ &算U的第j+1行 \,\,,\,\, U_{j+1,k}= \frac{A_{j+1,k}- \sum_{r=1}^{ j}L_{j+1,r}U_{r,k}}{L_{j+1,j+1}} ,k=j+1,j+2,\cdots ,n \\ \\ 3.& 回代 \,\,,\,\, \\ \\ & y_i= b_i- \sum_{j=1}^{ i-1}L_{i,j}y_j,i=1,2,\cdots ,n \\ \\ &x_i= \frac{y_i- \sum_{j=i+1}^{ n}x_j \cdot U_{i,j}}{U_{i,i}} \,\,,\,\, i=n,n-1, \cdots ,1 \end{align*} 1.2.3.矩阵L的对角元素为1,矩阵U的第一行和A相同。迭代,j=1,2,n1L的第j,Li,j=Uj,jAi,jr=1j1Li,rUr,j,i=j+1,j+2,,nU的第j+1,Uj+1,k=Lj+1,j+1Aj+1,kr=1jLj+1,rUr,k,k=j+1,j+2,,n回代,yi=bij=1i1Li,jyj,i=1,2,,nxi=Ui,iyij=i+1nxjUi,j,i=n,n1,,1
matlab实现

%% Ax=b例子
A = [16 -12 2 4;12 -8 6 10;3 -13 9 23;-6 14 1 -28];
b = [17 36 -49 -54]';
[x,L,U] = LUsolve(A,b)%% LU分解解Ax=b
% 输入方阵A,向量b
% 输出解x,L、U矩阵
function [x,L,U] = LUsolve(A,b)n = size(A);L = eye(n);U(1,[1:n]) = A(1,[1:end]);for j = 1:n-1 % 对U是行号,对L是列号for i = j+1:n % 算L第i行j列L(i,j) = A(i,j);for r = 1:j-1L(i,j) = L(i,j)- L(i,r)*U(r,j);endL(i,j) = L(i,j)/U(j,j);endfor k = j+1:n % 算U第j+1行k列U(j+1,k) = A(j+1,k);for r = 1:jU(j+1,k) = U(j+1,k)-L(j+1,r)*U(r,k);endU(j+1,k) = U(j+1,k)/L(j+1,j+1);endend% 回代for i = 1:ny(i) = b(i);for j = 1:i-1y(i) = y(i)-L(i,j)*y(j);endendfor i=n:-1:1 x(i) = y(i);for j=n:-1:i+1x(i) = x(i)-U(i,j)*x(j);endx(i) = x(i)/U(i,i);endx = x';
end

这篇关于【数值分析】LU分解解Ax=b,matlab自己编程实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/559471

相关文章

分布式锁在Spring Boot应用中的实现过程

《分布式锁在SpringBoot应用中的实现过程》文章介绍在SpringBoot中通过自定义Lock注解、LockAspect切面和RedisLockUtils工具类实现分布式锁,确保多实例并发操作... 目录Lock注解LockASPect切面RedisLockUtils工具类总结在现代微服务架构中,分布

Java使用Thumbnailator库实现图片处理与压缩功能

《Java使用Thumbnailator库实现图片处理与压缩功能》Thumbnailator是高性能Java图像处理库,支持缩放、旋转、水印添加、裁剪及格式转换,提供易用API和性能优化,适合Web应... 目录1. 图片处理库Thumbnailator介绍2. 基本和指定大小图片缩放功能2.1 图片缩放的

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499