WeNet语音识别调用通义千问

2024-01-01 13:29

本文主要是介绍WeNet语音识别调用通义千问,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

WeNet语音识别调用通义千问

WeNet语音识别对通义千问(Qwen-72B-Chat Bot)调用,首先通过WeNet将用户的语音输入转录为文本,然后将此文本输入通用问答模型以获取答案。

本人原创作品,体验一下
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
连续对话
在这里插入图片描述

WeNet语音识别部分: 使用WeNet库将录制的语音转换为文本。通过载入中文模型(chs_model)并使用其功能,对录制的语音进行转录处理。生成的文本作为用户输入被传递到下一步。

Qwen-72B-Chat Bot交互部分: 利用Dashscope库实现与Qwen-72B-Chat Bot的交互。根据用户的文本输入与Chat Bot进行交互,发送用户输入的文本并接收Chat Bot的回复。这里的逻辑在model_chat函数中完成,通过Generation.call()函数向Chat Bot发送消息并获取回复。

Gradio界面设计: Gradio库用于创建用户界面,包括麦克风录音输入、文本框显示以及清除历史和设置系统功能的按钮。在界面设计中,使用了Microphone、Textbox、Button和Chatbot等组件,允许用户进行语音输入并查看对话的交互结果。

整个代码的目的是提供一个基于Gradio的界面,使用户能够通过语音与Qwen-72B-Chat Bot进行交互,并展示对话历史、系统状态等信息。

这样的集成将语音识别和聊天机器人交互结合在一起,为用户提供了一个使用简单且直观的界面,以便通过语音进行问题提问与回答。

实现代码

import os
os.system('pip install dashscope')
os.system('pip install soundfile')
import gradio as gr
from http import HTTPStatus
import dashscope
from dashscope import Generation
from dashscope.api_entities.dashscope_response import Role
from typing import List, Optional, Tuple, Dict
from urllib.error import HTTPError
import wenet
import soundfile as sfdefault_system = 'You are a helpful assistant.'
chs_model = wenet.load_model('chinese')
YOUR_API_TOKEN = os.getenv('YOUR_API_TOKEN')
dashscope.api_key = YOUR_API_TOKEN
History = List[Tuple[str, str]]
Messages = List[Dict[str, str]]def clear_session() -> History:return []def modify_system_session(system: str) -> str:if system is None or len(system) == 0:system = default_systemreturn system, system, []def history_to_messages(history: History, system: str) -> Messages:messages = [{'role': Role.SYSTEM, 'content': system}]for h in history:messages.append({'role': Role.USER, 'content': h[0]})messages.append({'role': Role.ASSISTANT, 'content': h[1]})return messagesdef messages_to_history(messages: Messages) -> Tuple[str, History]:assert messages[0]['role'] == Role.SYSTEMsystem = messages[0]['content']history = []for q, r in zip(messages[1::2], messages[2::2]):history.append([q['content'], r['content']])return system, historydef model_chat(audio: Tuple[int, List[int]], history: Optional[History], system: str
) -> Tuple[str, str, History]:path = "recorded_audio.wav"sf.write(path, audio[1], audio[0])  query = chs_model.transcribe(path)['text']if query is None:query = ''if history is None:history = []messages = history_to_messages(history, system)messages.append({'role': Role.USER, 'content': query})gen = Generation.call(model = "qwen-72b-chat",messages=messages,result_format='message',stream=True)for response in gen:if response.status_code == HTTPStatus.OK:role = response.output.choices[0].message.roleresponse = response.output.choices[0].message.contentsystem, history = messages_to_history(messages + [{'role': role, 'content': response}])yield  history, systemelse:raise HTTPError('Request id: %s, Status code: %s, error code: %s, error message: %s' % (response.request_id, response.status_code,response.code, response.message))with gr.Blocks() as demo:gr.Markdown("""<p align="center"><img src="https://modelscope.cn/api/v1/models/qwen/Qwen-VL-Chat/repo?Revision=master&FilePath=assets/logo.jpg&View=true" style="height: 80px"/><p>""")gr.Markdown("""<center><font size=8>WeNet语音识别+Qwen-72B-Chat Bot👾</center>""")textbox = gr.Microphone(label="录音")with gr.Row():with gr.Column(scale=3):system_input = gr.Textbox(value=default_system, lines=1, label='System')with gr.Column(scale=1):modify_system = gr.Button("🛠️ 设置system并清除历史对话", scale=2)system_state = gr.Textbox(value=default_system, visible=False)chatbot = gr.Chatbot(label='Qwen-72B-Chat')with gr.Row():clear_history = gr.Button("🧹 清除历史对话")sumbit = gr.Button("🚀 发送")sumbit.click(model_chat,inputs=[textbox, chatbot, system_state],outputs=[chatbot, system_input],concurrency_limit=10)clear_history.click(fn=clear_session,inputs=[],outputs=[chatbot],concurrency_limit=10)modify_system.click(fn=modify_system_session,inputs=[system_input],outputs=[system_state, system_input, chatbot],concurrency_limit=10)demo.queue(api_open=False).launch(height=800, share=False)

依赖文件 requiements.txt

wenet @ git+https://github.com/wenet-e2e/wenet

这篇关于WeNet语音识别调用通义千问的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/559389

相关文章

Java调用Python脚本实现HelloWorld的示例详解

《Java调用Python脚本实现HelloWorld的示例详解》作为程序员,我们经常会遇到需要在Java项目中调用Python脚本的场景,下面我们来看看如何从基础到进阶,一步步实现Java与Pyth... 目录一、环境准备二、基础调用:使用 Runtime.exec()2.1 实现步骤2.2 代码解析三、

Python如何调用另一个类的方法和属性

《Python如何调用另一个类的方法和属性》在Python面向对象编程中,类与类之间的交互是非常常见的场景,本文将详细介绍在Python中一个类如何调用另一个类的方法和属性,大家可以根据需要进行选择... 目录一、前言二、基本调用方式通过实例化调用通过类继承调用三、高级调用方式通过组合方式调用通过类方法/静

C#控制台程序同步调用WebApi实现方式

《C#控制台程序同步调用WebApi实现方式》控制台程序作为Job时,需同步调用WebApi以确保获取返回结果后执行后续操作,否则会引发TaskCanceledException异常,同步处理可避免异... 目录同步调用WebApi方法Cls001类里面的写法总结控制台程序一般当作Job使用,有时候需要控制

Python用Flask封装API及调用详解

《Python用Flask封装API及调用详解》本文介绍Flask的优势(轻量、灵活、易扩展),对比GET/POST表单/JSON请求方式,涵盖错误处理、开发建议及生产环境部署注意事项... 目录一、Flask的优势一、基础设置二、GET请求方式服务端代码客户端调用三、POST表单方式服务端代码客户端调用四

Python跨文件实例化、跨文件调用及导入库示例代码

《Python跨文件实例化、跨文件调用及导入库示例代码》在Python开发过程中,经常会遇到需要在一个工程中调用另一个工程的Python文件的情况,:本文主要介绍Python跨文件实例化、跨文件调... 目录1. 核心对比表格(完整汇总)1.1 自定义模块跨文件调用汇总表1.2 第三方库使用汇总表1.3 导

使用Python的requests库调用API接口的详细步骤

《使用Python的requests库调用API接口的详细步骤》使用Python的requests库调用API接口是开发中最常用的方式之一,它简化了HTTP请求的处理流程,以下是详细步骤和实战示例,涵... 目录一、准备工作:安装 requests 库二、基本调用流程(以 RESTful API 为例)1.

Python调用LibreOffice处理自动化文档的完整指南

《Python调用LibreOffice处理自动化文档的完整指南》在数字化转型的浪潮中,文档处理自动化已成为提升效率的关键,LibreOffice作为开源办公软件的佼佼者,其命令行功能结合Python... 目录引言一、环境搭建:三步构建自动化基石1. 安装LibreOffice与python2. 验证安装

Java中调用数据库存储过程的示例代码

《Java中调用数据库存储过程的示例代码》本文介绍Java通过JDBC调用数据库存储过程的方法,涵盖参数类型、执行步骤及数据库差异,需注意异常处理与资源管理,以优化性能并实现复杂业务逻辑,感兴趣的朋友... 目录一、存储过程概述二、Java调用存储过程的基本javascript步骤三、Java调用存储过程示

Python中Tensorflow无法调用GPU问题的解决方法

《Python中Tensorflow无法调用GPU问题的解决方法》文章详解如何解决TensorFlow在Windows无法识别GPU的问题,需降级至2.10版本,安装匹配CUDA11.2和cuDNN... 当用以下代码查看GPU数量时,gpuspython返回的是一个空列表,说明tensorflow没有找到

python如何调用java的jar包

《python如何调用java的jar包》这篇文章主要为大家详细介绍了python如何调用java的jar包,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以参考一下... 目录一、安装包二、使用步骤三、代码演示四、自己写一个jar包五、打包步骤六、方法补充一、安装包pip3 install