最优化方法Python计算:无约束优化应用——神经网络回归模型

本文主要是介绍最优化方法Python计算:无约束优化应用——神经网络回归模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

人类大脑有数百亿个相互连接的神经元(如下图(a)所示),这些神经元通过树突从其他神经元接收信息,在细胞体内综合、并变换信息,通过轴突上的突触向其他神经元传递信息。我们在博文《最优化方法Python计算:无约束优化应用——逻辑回归模型》中讨论的逻辑回归模型(如下图(b)所示)与神经元十分相似,由输入端接收数据 x = ( x 1 x 2 ⋮ x n ) \boldsymbol{x}=\begin{pmatrix} x_1\\x_2\\\vdots\\x_n \end{pmatrix} x= x1x2xn ,作加权和 ∑ i = 1 n w i x i \sum\limits_{i=1}^nw_ix_i i=1nwixi加上偏移量 b b b,即 ∑ i = 1 n w i x i + b \sum\limits_{i=1}^nw_ix_i+b i=1nwixi+b,用逻辑函数将其映射到区间 ( 0 , 1 ) (0,1) (0,1)内,然后将如此变换所得的信息 y y y输出。
在这里插入图片描述
这启发人们将诸多逻辑回归模型分层连接起来,构成人工神经网络,创建出多层感应模型。下图展示了一个包括输入层、输出层和两个隐藏层(图中阴影部分)的人工神经网络。图中,黑点表示数据节点,圆圈表示人工神经元的处理节点。
在这里插入图片描述
记逻辑函数 sigmoid ( x ) = 1 1 + e − x = φ ( x ) \text{sigmoid}(x)=\frac{1}{1+e^{-x}}=\varphi(x) sigmoid(x)=1+ex1=φ(x)。设多层感应模型的输入数据为 n n n维向量 x = ( x 1 x 2 ⋮ x n ) \boldsymbol{x}=\begin{pmatrix} x_1\\x_2\\\vdots\\x_n \end{pmatrix} x= x1x2xn 。不算输入层,模型连同输出层及隐藏层共有 l l l层。记 m 0 = n m_0=n m0=n,第 i i i层( 0 < i ≤ l 0<i\leq l 0<il)含有 m i m_i mi个神经元。于是,相邻的两层,第 i − 1 i-1 i1和第 i i i之间共有 ( m i − 1 + 1 ) m i (m_{i-1}+1)m_{i} (mi1+1)mi个待定参数。因此,模型具有
p = ∑ i = 1 l ( m i − 1 + 1 ) m i p=\sum_{i=1}^l(m_{i-1}+1)m_i p=i=1l(mi1+1)mi
个待定参数,组织成 p p p维向量 w = ( w 1 w 2 ⋮ w p ) \boldsymbol{w}=\begin{pmatrix} w_1\\w_2\\\vdots\\w_p \end{pmatrix} w= w1w2wp 。设 k 0 = 0 k_0=0 k0=0,对 1 < i ≤ l 1<i\leq l 1<il k i = ∑ t = 0 i − 1 ( m t + 1 ) m t + 1 k_i=\sum\limits_{t=0}^{i-1}(m_{t}+1)m_{t+1} ki=t=0i1(mt+1)mt+1,记 ( m i − 1 − 1 ) × m i (m_{i-1}-1)\times m_i (mi11)×mi矩阵
w i = ( w k i + 1 ⋯ w k i + ( m i − 1 + 1 ) ( m i − 1 ) + 1 ⋮ ⋱ ⋮ w k i + ( m i − 1 + 1 ) ⋯ w k i + ( m i − 1 + 1 ) m i ) , i = 1 , 2 ⋯ , l \boldsymbol{w}_i=\begin{pmatrix} w_{k_i+1}&\cdots&w_{k_i+(m_{i-1}+1)(m_i-1)+1}\\ \vdots&\ddots&\vdots\\ w_{k_i+(m_{i-1}+1)}&\cdots&w_{k_i+(m_{i-1}+1)m_i} \end{pmatrix}, i=1,2\cdots,l wi= wki+1wki+(mi1+1)wki+(mi1+1)(mi1)+1wki+(mi1+1)mi ,i=1,2,l
定义函数
F ( w ; x ) = φ ( ( ⋯ φ ⏟ l ( ( x ⊤ , 1 ) w 1 ) , 1 ) , ⋯ ) , 1 ) w l ) . F(\boldsymbol{w};\boldsymbol{x})=\underbrace{\varphi((\cdots\varphi}_l((\boldsymbol{x}^\top,1)\boldsymbol{w}_1),1),\cdots),1)\boldsymbol{w}_l). F(w;x)=l φ((φ((x,1)w1),1),),1)wl).
该函数反映了数据从输入层到输出层的传输方向,称为前向传播函数,作为多层感应模型的拟合函数。按此定义,我们构建如下的多层感应模型类

import numpy as np												#导入numpy
class MLPModel(LogicModel):										#多层感应模型def construct(self, X, hidden_layer_sizes):					#确定网络结构if len(X.shape)==1:										#计算输入端节点数k = 1else:k = X.shape[1]self.layer_sizes = (k,)+hidden_layer_sizes+(1,)  def patternlen(self):										#模式长度p = 0l = len(self.layer_sizes)								#总层数for i in range(l-1):									#逐层累加m = self.layer_sizes[i]n = self.layer_sizes[i+1]p += (m+1)*nreturn pdef F(self, w, x):											#拟合函数l = len(self.layer_sizes)								#总层数m, n = self.layer_sizes[0],self.layer_sizes[1]k = (m+1)*n												#第0层参数个数W = w[0:k].reshape(m+1,n)								#0层参数折叠为矩阵z = LogicModel.F(self, W, x)							#第1层的输入for i in range(1, l-1):									#逐层计算m = self.layer_sizes[i]								#千层节点数n = self.layer_sizes[i+1]							#后层节点数W = w[k:k+(m+1)*n].reshape(m+1,n)					#本层参数矩阵z = np.hstack((z, np.ones(z.shape[0]).				#本层输入矩阵reshape(z.shape[0], 1)))z = LogicModel.F(self, W, z)						#下一层输入k += (m+1)*n										#下一层参数下标起点y = z.flatten()											#展平输出return ydef fit(self, X, Y, w = None, hidden_layer_sizes = (100,)):	#重载训练函数self.construct(X, hidden_layer_sizes)LogicModel.fit(self, X, Y, w)
class MLPRegressor(Regression, MLPModel):'''神经网络回归模型'''

MLPModel继承了LogicModel类(详见博文《最优化方法Python计算:无约束优化应用——逻辑回归模型》)在MLPModel中除了重载模式长度计算函数patternlen、拟合函数F和训练函数fit外,增加了一个LogicModel类所没有的对象函数construct,用来确定神经网络的结构:有少层,各层有多少个神经元。
具体而言,第3~8行的construct函数,利用传递给它的输入矩阵X和隐藏层结构hidden_layer_sizes,这是一个元组,计算神经网络的各层结构。第4~7行的if-else分支按输入数据X的形状确定输入层的节点数k。第8行将元组(k,1)和(1,)分别添加在hidden_layer_sizes的首尾两端,即确定了网络结构layer_sizes。
第9~16行重载了模式长度计算函数patternlen。第11行根据模型的结构元组layer_sizes的长度确定层数l。第12~15行的for循环组成计算各层的参数个数:m为前层节点数(第13行),n为后层节点数(第14行),则第15行中(m+1)*n就是本层的参数个数,这是因为后层的每个节点的输入必须添加一个偏移量。第16行将算得的本层参数个数累加到总数p(第10行初始化为0)。
第17~32行重载拟合函数F,参数中w表示模式 w ∈ R p \boldsymbol{w}\in\text{R}^p wRp,x表示自变量 ( x ⊤ , 1 ) (\boldsymbol{x}^\top,1) (x,1)。第18行读取网络层数l。第19~22行计算第1隐藏层的输入:第19行读取第0层节点数m第1隐藏层节点数n。第20行计算第0层参数个数k(也是第1层参数下标起点)。第22行构造第0层的参数矩阵W。第22行计算 φ ( ( x ⊤ , 1 ) w 1 ) \varphi((\boldsymbol{x}^\top,1)\boldsymbol{w}_1) φ((x,1)w1),作为第1隐藏层的输入z。第23~20行的for循环依次逐层构造本层参数矩阵 w i \boldsymbol{w}_i wi(第26行)和输入 ( z i ⊤ , 1 ) (\boldsymbol{z}_i^\top,1) (zi,1)(第27~28行),第30行计算下一层的输入 φ ( ( z i ⊤ , 1 ) w i ) \varphi((\boldsymbol{z}_i^\top,1)\boldsymbol{w}_i) φ((zi,1)wi)为z,第30行更新下一层参数下标起点k。完成循环,所得y因为是矩阵运算的结果,第31层将其扁平化为一维数组。第33~35行重载训练函数fit。与其祖先LogicModel的(也是LineModel)fit函数相比,多了一个表示网络结构的参数hidden_layer_sizes。如前所述,这是一个元组,缺省值为(100,),意味着只有1个隐藏层,隐藏层含100个神经元。函数体内第34行调用自身的construct函数,构造网络结构layer_sizes,供调用拟合函数F时使用。第35行调用祖先LogicModel的fit函数完成训练。
第36~37用Regression类和MLPModel类联合构成用于预测的多层感应模型类MLPRegressor。
理论上,只要给定足够多的隐藏层和层内所含神经元,多层感应模型能拟合任意函数。
例1 用MLPRegressor对象拟合函数 y = x 2 y=x^2 y=x2
:先构造训练数据:

import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import uniform
np.random.seed(2023)
x = uniform.rvs(-1, 2, 50)
y = (x**2)
plt.scatter(x, y)
plt.show()

第5行产生50个服从均匀分布 U ( 0 , 1 ) U(0,1) U(0,1)的随机数值,赋予x。第6行计算x的平方赋予y。第7行绘制 ( x , y ) (x,y) (x,y)散点图。
在这里插入图片描述
用仅含一个隐藏层,隐藏层中包含3个神经元的多层感应器拟合 y = x 2 y=x^2 y=x2

import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import uniform
.random.seed(2023)
x = uniform.rvs(-1, 2, 50)
y = (x**2)
nnw = MLPRegressor()
nnw.fit(x,y,hidden_layer_sizes = (3,))
yp, acc = nnw.test(x, y)
plt.scatter(x, yp)
plt.show()
print('1隐藏层含3个神经元网络拟合均方根误差%.4f'%acc)

前5行与前同。第6行创建MLPRegressor类对象nnw。第7行用x,y训练nnw为含1个隐藏层,隐藏层含3个神经元的神经网络。第8行调用nnw的test函数,用返回的yp绘制 ( x , y p ) (x,y_p) (x,yp)散点图。
在这里插入图片描述

训练中...,稍候
726次迭代后完成训练。
1隐藏层含3个神经元网络拟合均方根误差0.0238

用含两个隐藏层,分别包含7个、3个神经元的多层感应器拟合 y = x 2 y=x^2 y=x2

import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import uniform
.random.seed(2023)
x = uniform.rvs(-1, 2, 50)
y = (x**2)
nnw = MLPRegressor()
nnw.fit(x, y, hidden_layer_sizes = (7, 3))
yp, acc = nnw.test(x,y)
plt.scatter(x, yp)
plt.show()
print('2隐藏层含各7,3个神经元网络拟合方根误差%.4f'%acc)

与上一段代码比较,仅第8行训练nnw的网络换成两个隐藏层,分别包含7个、3个神经元的多层感应器。运行程序,输出
在这里插入图片描述

训练中...,稍候
1967次迭代后完成训练。
2隐藏层含各73个神经元网络拟合方根误差0.0053

比前一个显然拟合得更好,但也付出了计算时间的代价。
Say good bye, 2023.

这篇关于最优化方法Python计算:无约束优化应用——神经网络回归模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/557637

相关文章

Python开发文字版随机事件游戏的项目实例

《Python开发文字版随机事件游戏的项目实例》随机事件游戏是一种通过生成不可预测的事件来增强游戏体验的类型,在这篇博文中,我们将使用Python开发一款文字版随机事件游戏,通过这个项目,读者不仅能够... 目录项目概述2.1 游戏概念2.2 游戏特色2.3 目标玩家群体技术选择与环境准备3.1 开发环境3

Python中模块graphviz使用入门

《Python中模块graphviz使用入门》graphviz是一个用于创建和操作图形的Python库,本文主要介绍了Python中模块graphviz使用入门,具有一定的参考价值,感兴趣的可以了解一... 目录1.安装2. 基本用法2.1 输出图像格式2.2 图像style设置2.3 属性2.4 子图和聚

windows和Linux使用命令行计算文件的MD5值

《windows和Linux使用命令行计算文件的MD5值》在Windows和Linux系统中,您可以使用命令行(终端或命令提示符)来计算文件的MD5值,文章介绍了在Windows和Linux/macO... 目录在Windows上:在linux或MACOS上:总结在Windows上:可以使用certuti

Python使用Matplotlib绘制3D曲面图详解

《Python使用Matplotlib绘制3D曲面图详解》:本文主要介绍Python使用Matplotlib绘制3D曲面图,在Python中,使用Matplotlib库绘制3D曲面图可以通过mpl... 目录准备工作绘制简单的 3D 曲面图绘制 3D 曲面图添加线框和透明度控制图形视角Matplotlib

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

基于Python打造一个智能单词管理神器

《基于Python打造一个智能单词管理神器》这篇文章主要为大家详细介绍了如何使用Python打造一个智能单词管理神器,从查询到导出的一站式解决,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 项目概述:为什么需要这个工具2. 环境搭建与快速入门2.1 环境要求2.2 首次运行配置3. 核心功能使用指

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

利用Python打造一个Excel记账模板

《利用Python打造一个Excel记账模板》这篇文章主要为大家详细介绍了如何使用Python打造一个超实用的Excel记账模板,可以帮助大家高效管理财务,迈向财富自由之路,感兴趣的小伙伴快跟随小编一... 目录设置预算百分比超支标红预警记账模板功能介绍基础记账预算管理可视化分析摸鱼时间理财法碎片时间利用财