Personal Rank算法的原理及实现

2023-12-31 11:50

本文主要是介绍Personal Rank算法的原理及实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.简介

PageRank[1]是Google创始人拉里·佩奇和谢尔盖·布林于1997提出的用于客观评价网页的重要度的方法,最初的PageRank算法是主题无关的,它不依赖于任何特定的搜索查询。为了得到主题相关的搜索结果,Haveliwala提出主题敏感的PageRank方法,称为PersonalRank[2],该方法用于在二分图中为用户进行推荐。二分图又称为二部图,是图论中的一种特殊模型,设G=(V,E) 是一个图,如果顶点V可分割为两个互不相交的子集(A, B),并且图中的每条边(i, j)所关联的两个顶点i和j分别属于这两个不同的顶点集(i in A, j in B) ,则称图G为一个二分图,如图所示:

图1-1 二分图

假设给“任小牛”进行个性化推荐,从节点“任小牛”开始游走,游走到一个节点时,首先alpha概率决定继续游走,或者以(1-alpha)的概率停止这次游走并从“任小牛”节点开始重新游走;如果决定继续游走,那么就从当前节点指向的节点中按照权重随机选择一个节点作为下次经过的节点,这样经过很多次的随机游走后,每个节点被访问到的概率就会收敛。最终推荐列表中节点的权重就是节点的访问概率,PersonalRank方法公式如下1-1所示,其中PR(j)表示物品j的访问概率,out(i) 是物品节点i的出度,alpha决定继续访问的概率。 

(1-1)

但是,迭代形式的Personal Rank算法计算复杂度较高,它需要经过多次的迭代游走,才能使得各节点的重要度趋于稳定,其改进方案是经过一次矩阵运算直接得到系统的稳态,公式1-2为上式的矩阵表示形式: 

​​

(1-2) 

其中r是n维向量,每个元素表示一个节点的PR重要度, 也是个n维向量,第i个位置上是1,其余位置均为0,表示对第i个节点进行推荐,M 是n阶转移矩阵,定义见公式1-3:

(1-3) 

由公式1-2变形可以得到公式1-4和公式1-5:

​​​​​​​

(1-4) 

​​​​​​​

(1-5) 

基于公式1-5,解一次线性方程组即可以得到r的值,对r中的各元素降序排列即为节点i的推荐列表。

2.实现

基于Python语言设计并实现了PersonalRank类,它的逻辑较为简单,见流程图2-1所示:

图2-1 Personal Rank流程图

在Personal Rank类中,不同实现的输入和输出都是一致的,输入都是networkx库DiGraph(有向图),输出则是对应节点的推荐列表,只不过有着三种不同的实现:

  1. train()方法基于迭代游走;
  2. train_matrix()方法基于numpy库进行矩阵运算;
  3. train_csr_matrix()基于scipy的稀疏矩阵进行矩阵运算。

对于Personal Rank算法来说,迭代游走是最为直观的方式,也是最耗时的实现方式。

首先构造图,即PersonalRank类的输入:

if __name__ == '__main__':graph = networkx.DiGraph()graph.add_edge('任小牛', '笔记本电脑', weight=1)graph.add_edge('任小牛', '风扇', weight=0.1)graph.add_edge('任小牛', '键盘', weight=0.1)graph.add_edge('卡洛斯', '笔记本电脑', weight=0.2)graph.add_edge('卡洛斯', '风扇', weight=0.3)graph.add_edge('詹姆斯', '风扇', weight=0.4)graph.add_edge('詹姆斯', '键盘', weight=0.5)graph.add_edge('卡尔', '笔记本电脑', weight=0.7)graph.add_edge('卡尔', '键盘', weight=0.9)rank = PersonalRank(alpha=0.85)target = '任小牛'rs = rank.train(graph, target, 2000)rs = sorted(rs.items(), key=lambda x: x[1], reverse=True)print(rs)# 另一个rs = rank.train_matrix(graph, target)rs = sorted(rs.items(), key=lambda x: x[1], reverse=True)print(rs)# gmresrs = rank.train_csr_matrix(graph, target)rs = sorted(rs.items(), key=lambda x: x[1], reverse=True)print(rs)

本文实现的PersonalRank类的输入是有向有权图,有向是为了权重服务的,而权重则是根据需求自己定义的,一般情况下,权重应该小于等于1。

接着是构造函数,alpha的作用表示转移概率:

import time
import networkx
import functools
import numpy as np
from numpy.linalg import solve
from scipy.sparse import csr_matrix
from scipy.sparse.linalg import gmres, lgmresclass PersonalRank(object):def __init__(self, alpha):self.alpha = alpha

然后是train方法的实现:

    @log_timedef train(self, graph, root, iterations):rank = {x: 0 for x in graph.nodes}rank[root] = 1count = 0# 迭代while True:tmp = {x: 0 for x in graph.nodes}# 节点i和它的出度节点集合rifor node in graph.nodes:out_nodes = list(graph.neighbors(node))out_degree = len(out_nodes)# 节点j和边权重for j in out_nodes:data = graph.get_edge_data(node, j)tmp[j] += self.alpha * rank[node] / out_degree * data['weight']# 每次游走都是从root出发,因此root节点的权重需要加上1- alphatmp[root] += (1 - self.alpha)rank = tmpcount += 1if count >= iterations:# print('PersonalRank:%d' % count)breakreturn rank

train_matrix方法和train_csr_matrix方法基于矩阵计算得到推荐结果,前者使用numpy,后者使用了scipy的稀疏矩阵,它们比迭代游走多出的一个获取权重矩阵的步骤:

def _get_weight_matrix(graph, is_using_out=True):nodes = list(graph.nodes)matrix = networkx.adjacency_matrix(graph).Aif is_using_out:degrees = [1.0/graph.degree(node) for node in nodes]degrees = np.tile(degrees, (len(nodes), 1))matrix = csr_matrix(np.multiply(matrix, degrees))return matrix

_get_weight_matrix()方法较为简单,因为使用了networkx的缘故,因此直接调用networkx.adjacency_matrix方法得到权重矩阵,之后的判断表示是否使用出度均分权重。

class PersonalRank(object):...@log_timedef train_matrix(self, graph, root):"""使用矩阵求解:param graph: networkx.DiGraph:param alpha: 系数,一般为0.8左右:param root: 从哪出发:return:"""# 生成矩阵nodes = list(graph.nodes)matrix = _get_weight_matrix(graph)# 除了边的权重外,还需要为每个点乘以出度的倒数r0 = np.matrix([[1 if node == root else 0] for node in nodes])n = matrix.shape[0]# 求解A = np.eye(n) - self.alpha * matrix.Tb = (1 - self.alpha) * r0r = solve(A, b)rank = {}for j in range(n):rank[nodes[j]] = r[j, 0]return rank@log_timedef train_csr_matrix(self, graph, root):# 生成矩阵nodes = list(graph.nodes)matrix = _get_weight_matrix(graph)n = matrix.shape[0]r0 = np.matrix([[1 if node == root else 0] for node in nodes])A = np.eye(n) - self.alpha * matrix.Tb = (1 - self.alpha) * r0r = lgmres(A, b, tol=1e-8, atol=1e-8, maxiter=1)[0]rank = {}for j in range(n):rank[nodes[j]] = r[j]return rank

train方法、train_matrix方法和train_csr_matrix方法都使用了log_time装饰器来计算执行的时间,实现如下:

def log_time(func):@functools.wraps(func)def wrapper(*args, **kwargs):start = time.time()rs = func(*args, **kwargs)print('%s:duration:%.6f' % (func.__name__, time.time() - start))return rsreturn wrapper

最后则是查看执行结果:

train:duration:0.014966
[('任小牛', 0.15000000000000002), ('笔记本电脑', 0.0425), ('风扇', 0.00425), ('键盘', 0.00425), ('卡洛斯', 0), ('詹姆斯', 0), ('卡尔', 0)]
train_matrix:duration:0.000994
[('任小牛', 0.15000000000000002), ('笔记本电脑', 0.0425), ('风扇', 0.00425), ('键盘', 0.00425), ('卡洛斯', 0.0), ('詹姆斯', 0.0), ('卡尔', 0.0)]
train_csr_matrix:duration:0.000996
[('任小牛', 0.15000000000000002), ('笔记本电脑', 0.042499999999999996), ('风扇', 0.0042499999999999994), ('键盘', 0.0042499999999999994), ('卡洛斯', 0.0), ('詹姆斯', 0.0), ('卡尔', 0.0)]

注:本示例中只有从“人”到“物品”的边,因此对于没有“人”->“物品”边的推荐分数为0。

从执行结果来看,三个方法的推荐结果基本一致;从执行时间上来看,迭代游走花费的时间是其他两个方法的15倍;而目前对于后两个方法来看,执行结果基本一致,但是当网络变大时,第三个方法的执行时间要小于第二个方法。

3.实例验证

本文的实例验证各个实现所花费的时间,其场景为基于《战略性新兴产业》为地区推荐高校,它们之间的关系见图3-1所示:

图3-1 二分图

暂且不提单位和战略性新兴产业的边及边的权重的由来,若选择近10年全国发表专利最多的150个高校,为地区推荐高校,那么在构造好有向有权图后,得到推荐列表见图3-2:

在本次示例中,地区、高校和战略性新兴产业共1460个节点,其花费时间见表3-1:

表3-1 各个方法花费的时间
train(3000)train_matrixtrain_csr_matrix
time3.6264830.012020.004987

4.参考文献

  1. Page, Lawrence, Brin, et al. Page, L. et al.: The PageRank citation ranking: Bringing order to the web. stanford digital libraries working paper, 1998.
  2. Haveliwala T H. Topic-sensitive PageRank[C]// International world wide web conference. ACM, 2002.

5.参考帖子

个性化推荐召回算法——Personal Rank

基于图的推荐算法及Python实现(PersonalRank)

PersonalRank:一种基于图的推荐算法

这篇关于Personal Rank算法的原理及实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/555950

相关文章

HTML5 getUserMedia API网页录音实现指南示例小结

《HTML5getUserMediaAPI网页录音实现指南示例小结》本教程将指导你如何利用这一API,结合WebAudioAPI,实现网页录音功能,从获取音频流到处理和保存录音,整个过程将逐步... 目录1. html5 getUserMedia API简介1.1 API概念与历史1.2 功能与优势1.3

Java实现删除文件中的指定内容

《Java实现删除文件中的指定内容》在日常开发中,经常需要对文本文件进行批量处理,其中,删除文件中指定内容是最常见的需求之一,下面我们就来看看如何使用java实现删除文件中的指定内容吧... 目录1. 项目背景详细介绍2. 项目需求详细介绍2.1 功能需求2.2 非功能需求3. 相关技术详细介绍3.1 Ja

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

PostgreSQL中MVCC 机制的实现

《PostgreSQL中MVCC机制的实现》本文主要介绍了PostgreSQL中MVCC机制的实现,通过多版本数据存储、快照隔离和事务ID管理实现高并发读写,具有一定的参考价值,感兴趣的可以了解一下... 目录一 MVCC 基本原理python1.1 MVCC 核心概念1.2 与传统锁机制对比二 Postg

SpringBoot整合Flowable实现工作流的详细流程

《SpringBoot整合Flowable实现工作流的详细流程》Flowable是一个使用Java编写的轻量级业务流程引擎,Flowable流程引擎可用于部署BPMN2.0流程定义,创建这些流程定义的... 目录1、流程引擎介绍2、创建项目3、画流程图4、开发接口4.1 Java 类梳理4.2 查看流程图4

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

基于Python实现一个Windows Tree命令工具

《基于Python实现一个WindowsTree命令工具》今天想要在Windows平台的CMD命令终端窗口中使用像Linux下的tree命令,打印一下目录结构层级树,然而还真有tree命令,但是发现... 目录引言实现代码使用说明可用选项示例用法功能特点添加到环境变量方法一:创建批处理文件并添加到PATH1