NetApp通过Spot Wave帮助组织降低Kubernetes上大数据应用的基础架构成本和复杂性

本文主要是介绍NetApp通过Spot Wave帮助组织降低Kubernetes上大数据应用的基础架构成本和复杂性,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Spot Wave可以为在Kubernetes上运行Apache Spark应用提供无服务器的基础架构,助力企业专注于开发数据应用

 

加州森尼韦尔--(美国商业资讯)--以云为主导、以数据为中心的跨国软件公司NetApp (NASDAQ: NTAP)今天宣布推出Spot Wave by NetApp,同时宣布Spot Ocean支持Microsoft Azure Kubernetes服务。这些产品组合将为客户提供领先的解决方案,为云原生应用提供简单、可扩展的高效基础架构。

 

Wave可以实现自动配置、部署、自动扩展和优化Apache Spark大数据应用在云中Kubernetes上运行,帮助减少高达90%的云浪费和费用。使用Wave作为统包解决方案,组织可以更轻松、更快速地部署Spark环境,并专注于让他们的数据发挥作用,因为他们知道Wave可以确保其基础架构在可用性、性能和成本方面不断获得优化。

 

Wave基于Spot的人工智能引擎打造,使用与Spot Ocean相同的成熟技术。Wave可以提供:

 

  • 成本优化:Wave使用竞价实例、定制实例和预留实例的智能组合在预装式基础架构上运行Spark任务,可以为客户在云基础架构上节省高达90%的成本。
  • 无服务器基础架构和Spark感知型自动扩展:内置的自动扩展功能可以根据工作负载要求将适当类型和规模的计算实例与Spark作业匹配,从而实现性能和效率的最大化。
  • Spark任务规模调整和监控:根据对Spark任务实际需求的分析,不断调整任务的Spark配置。

 

Spot by NetApp副总裁兼总经理Amiram Shachar表示:“组织正在迅速部署Kubernetes,以更快速、更敏捷地提供原生云应用,这些应用不仅用于无状态服务,还用于大数据应用。组织必须权衡云基础架构的成本、性能和可用性,以获得最佳效益,而这一过程非常复杂、耗时。Spot Wave和Ocean正在通过为Spark提供无服务器体验,同时确保基础架构不断优化,来解决这一问题。”

 

NetApp还宣布,Ocean作为Spot的无服务器容器引擎和Spot Wave的基础,现在已经支持Microsoft Azure Kubernetes服务(AKS),此外还支持AWS ECS(弹性容器服务)和EKS(弹性Kubernetes服务),以及谷歌的GKE(谷歌Kubernetes引擎)。

 

Fyber首席技术官Gal Aviv表示:“Wave基于我们在Ocean中所喜爱的功能而构建,专注于大数据应用的特定需求。将Spark应用嵌入到Wave之中可以带来强大的性能。这款解决方案还具有利用现有工具执行任务的惊人价值,并且还具备潜力加快启动适当的基础架构来驱动密集型ML应用程序。”

 

NetApp和Spot by NetApp在Kubernetes和Kubernetes社区均有着深厚的参与历史和经验。通过持续投资于面向Kubernetes的NetApp和Spot by NetApp产品,NetApp可以为Kubernetes提供领先的解决方案和应用驱动型基础架构和数据管理能力,这些都是企业运行关键的云原生应用所必需的。

 

欲了解有关Spot Wave的更多信息,请访问https://spot.io/products/wave。

 

关于NetApp

 

NetApp是一家以云为主导、以数据为中心的跨国软件企业,在日益加速的数字化转型时代,倾力帮助企业利用数据保持领先优势。无论企业是在云端执行开发,将应用程序迁移到云端,还是在内部自行打造类云体验,NetApp都能提供适用的系统、软件和云服务,助力企业从数据中心到云端以最优化的方式运行应用程序。此外,NetApp还提供跨不同环境运行的解决方案,帮助企业构建自己的Data Fabric,随时随地安全地为合适的人员提供正确的数据、服务和应用程序。欢迎访问www.netapp.com了解更多信息,或者在Twitter、LinkedIn、Facebook和Instagram上关注我们。

 

NETAPP、NETAPP标识和http://www.netapp.com/TM上所列的商标是NetApp, Inc.的商标。所有公司和产品名称均为其各自所有者的商标。

这篇关于NetApp通过Spot Wave帮助组织降低Kubernetes上大数据应用的基础架构成本和复杂性的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/554209

相关文章

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Pandas统计每行数据中的空值的方法示例

《Pandas统计每行数据中的空值的方法示例》处理缺失数据(NaN值)是一个非常常见的问题,本文主要介绍了Pandas统计每行数据中的空值的方法示例,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是空值?为什么要统计空值?准备工作创建示例数据统计每行空值数量进一步分析www.chinasem.cn处

C语言中位操作的实际应用举例

《C语言中位操作的实际应用举例》:本文主要介绍C语言中位操作的实际应用,总结了位操作的使用场景,并指出了需要注意的问题,如可读性、平台依赖性和溢出风险,文中通过代码介绍的非常详细,需要的朋友可以参... 目录1. 嵌入式系统与硬件寄存器操作2. 网络协议解析3. 图像处理与颜色编码4. 高效处理布尔标志集合

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

Spring 请求之传递 JSON 数据的操作方法

《Spring请求之传递JSON数据的操作方法》JSON就是一种数据格式,有自己的格式和语法,使用文本表示一个对象或数组的信息,因此JSON本质是字符串,主要负责在不同的语言中数据传递和交换,这... 目录jsON 概念JSON 语法JSON 的语法JSON 的两种结构JSON 字符串和 Java 对象互转

C++如何通过Qt反射机制实现数据类序列化

《C++如何通过Qt反射机制实现数据类序列化》在C++工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作,所以本文就来聊聊C++如何通过Qt反射机制实现数据类序列化吧... 目录设计预期设计思路代码实现使用方法在 C++ 工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作。由于数据类