NetApp通过Spot Wave帮助组织降低Kubernetes上大数据应用的基础架构成本和复杂性

本文主要是介绍NetApp通过Spot Wave帮助组织降低Kubernetes上大数据应用的基础架构成本和复杂性,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Spot Wave可以为在Kubernetes上运行Apache Spark应用提供无服务器的基础架构,助力企业专注于开发数据应用

 

加州森尼韦尔--(美国商业资讯)--以云为主导、以数据为中心的跨国软件公司NetApp (NASDAQ: NTAP)今天宣布推出Spot Wave by NetApp,同时宣布Spot Ocean支持Microsoft Azure Kubernetes服务。这些产品组合将为客户提供领先的解决方案,为云原生应用提供简单、可扩展的高效基础架构。

 

Wave可以实现自动配置、部署、自动扩展和优化Apache Spark大数据应用在云中Kubernetes上运行,帮助减少高达90%的云浪费和费用。使用Wave作为统包解决方案,组织可以更轻松、更快速地部署Spark环境,并专注于让他们的数据发挥作用,因为他们知道Wave可以确保其基础架构在可用性、性能和成本方面不断获得优化。

 

Wave基于Spot的人工智能引擎打造,使用与Spot Ocean相同的成熟技术。Wave可以提供:

 

  • 成本优化:Wave使用竞价实例、定制实例和预留实例的智能组合在预装式基础架构上运行Spark任务,可以为客户在云基础架构上节省高达90%的成本。
  • 无服务器基础架构和Spark感知型自动扩展:内置的自动扩展功能可以根据工作负载要求将适当类型和规模的计算实例与Spark作业匹配,从而实现性能和效率的最大化。
  • Spark任务规模调整和监控:根据对Spark任务实际需求的分析,不断调整任务的Spark配置。

 

Spot by NetApp副总裁兼总经理Amiram Shachar表示:“组织正在迅速部署Kubernetes,以更快速、更敏捷地提供原生云应用,这些应用不仅用于无状态服务,还用于大数据应用。组织必须权衡云基础架构的成本、性能和可用性,以获得最佳效益,而这一过程非常复杂、耗时。Spot Wave和Ocean正在通过为Spark提供无服务器体验,同时确保基础架构不断优化,来解决这一问题。”

 

NetApp还宣布,Ocean作为Spot的无服务器容器引擎和Spot Wave的基础,现在已经支持Microsoft Azure Kubernetes服务(AKS),此外还支持AWS ECS(弹性容器服务)和EKS(弹性Kubernetes服务),以及谷歌的GKE(谷歌Kubernetes引擎)。

 

Fyber首席技术官Gal Aviv表示:“Wave基于我们在Ocean中所喜爱的功能而构建,专注于大数据应用的特定需求。将Spark应用嵌入到Wave之中可以带来强大的性能。这款解决方案还具有利用现有工具执行任务的惊人价值,并且还具备潜力加快启动适当的基础架构来驱动密集型ML应用程序。”

 

NetApp和Spot by NetApp在Kubernetes和Kubernetes社区均有着深厚的参与历史和经验。通过持续投资于面向Kubernetes的NetApp和Spot by NetApp产品,NetApp可以为Kubernetes提供领先的解决方案和应用驱动型基础架构和数据管理能力,这些都是企业运行关键的云原生应用所必需的。

 

欲了解有关Spot Wave的更多信息,请访问https://spot.io/products/wave。

 

关于NetApp

 

NetApp是一家以云为主导、以数据为中心的跨国软件企业,在日益加速的数字化转型时代,倾力帮助企业利用数据保持领先优势。无论企业是在云端执行开发,将应用程序迁移到云端,还是在内部自行打造类云体验,NetApp都能提供适用的系统、软件和云服务,助力企业从数据中心到云端以最优化的方式运行应用程序。此外,NetApp还提供跨不同环境运行的解决方案,帮助企业构建自己的Data Fabric,随时随地安全地为合适的人员提供正确的数据、服务和应用程序。欢迎访问www.netapp.com了解更多信息,或者在Twitter、LinkedIn、Facebook和Instagram上关注我们。

 

NETAPP、NETAPP标识和http://www.netapp.com/TM上所列的商标是NetApp, Inc.的商标。所有公司和产品名称均为其各自所有者的商标。

这篇关于NetApp通过Spot Wave帮助组织降低Kubernetes上大数据应用的基础架构成本和复杂性的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/554209

相关文章

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

深入浅出SpringBoot WebSocket构建实时应用全面指南

《深入浅出SpringBootWebSocket构建实时应用全面指南》WebSocket是一种在单个TCP连接上进行全双工通信的协议,这篇文章主要为大家详细介绍了SpringBoot如何集成WebS... 目录前言为什么需要 WebSocketWebSocket 是什么Spring Boot 如何简化 We

Java Stream流之GroupBy的用法及应用场景

《JavaStream流之GroupBy的用法及应用场景》本教程将详细介绍如何在Java中使用Stream流的groupby方法,包括基本用法和一些常见的实际应用场景,感兴趣的朋友一起看看吧... 目录Java Stream流之GroupBy的用法1. 前言2. 基础概念什么是 GroupBy?Stream

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

C#中的Converter的具体应用

《C#中的Converter的具体应用》C#中的Converter提供了一种灵活的类型转换机制,本文详细介绍了Converter的基本概念、使用场景,具有一定的参考价值,感兴趣的可以了解一下... 目录Converter的基本概念1. Converter委托2. 使用场景布尔型转换示例示例1:简单的字符串到

Spring Boot Actuator应用监控与管理的详细步骤

《SpringBootActuator应用监控与管理的详细步骤》SpringBootActuator是SpringBoot的监控工具,提供健康检查、性能指标、日志管理等核心功能,支持自定义和扩展端... 目录一、 Spring Boot Actuator 概述二、 集成 Spring Boot Actuat

PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例

《PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例》词嵌入解决NLP维度灾难,捕捉语义关系,PyTorch的nn.Embedding模块提供灵活实现,支持参数配置、预训练及变长... 目录一、词嵌入(Word Embedding)简介为什么需要词嵌入?二、PyTorch中的nn.Em