yolov8实战第四天——yolov8图像分类 ResNet50图像分类(保姆式教程)

2023-12-30 18:44

本文主要是介绍yolov8实战第四天——yolov8图像分类 ResNet50图像分类(保姆式教程),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

yolov8实战第一天——yolov8部署并训练自己的数据集(保姆式教程)_yolov8训练自己的数据集-CSDN博客在前几天,我们使用yolov8进行了部署,并在目标检测方向上进行自己数据集的训练与测试,今天我们训练下yolov8的图像分类,看看效果如何,同时使用resnet50也训练一个分类模型,看看哪个效果好!

图像分类是指将输入的图像自动分类为不同的类别。它是计算机视觉领域的一个重要应用,可以用于人脸识别、物体识别、场景分类等任务。

通常情况下,图像分类的流程如下:

  1. 收集和准备数据集:收集与任务相关的图像数据,并将其打上标签。
  2. 定义模型:选择一种适合于你的任务的深度学习模型,例如卷积神经网络(CNN)。
  3. 训练模型:使用收集到的数据集对模型进行训练,通过反向传播算法来更新模型参数,使其可以根据输入图像进行正确的分类。
  4. 评估模型性能:使用测试集对已经训练好的模型进行评估,比较模型预测结果与真实标签之间的差异,从而评估模型的性能。
  5. 使用模型进行预测:使用已经训练好的模型对新的图像进行分类预测。

在实际应用中,可以使用各种深度学习框架(例如 TensorFlow、PyTorch、Keras 等)来构建图像分类模型,并使用各种数据增强技术(例如旋转、缩放、裁剪等)来增加数据集的多样性和数量。

如果你想学习如何使用深度学习框架来构建图像分类模型,可以参考一些在线教程、书籍或者 MOOC。

一、yolov8图像分类

1.模型选型

下载yolov8分类模型。

分别使用模型进行测试:

yolov8n-cls效果:

yolov8m-cls效果:

总结:n效果不咋地,还是得使用m进行后续训练工作。 

2.数据集准备

皮肤癌检测_数据集-飞桨AI Studio星河社区

同目标检测,还是放在datasets下。

直接改成这个,省去分数据集操作。 

 3.训练

yolo classify train data=./datasets/skin-cancer-detection model=yolov8n-cls.pt epochs=100

测试:

yolo classify predict model=runs/classify/train4/weights/best.pt source='./datasets/skin-cancer-detection/train/nevus'

  

label: 

 pred:

总结:数据集比较小,yolov8效果不太好。

、resnet50图像分类

Resnet50 网络中包含了 49 个卷积层、一个全连接层。如图下图所示,Resnet50网络结构可以分成七个部分,第一部分不包含残差块,主要对输入进行卷积、正则化、激活函数、最大池化的计算。第二、三、四、五部分结构都包含了残差块,图 中的绿色图块不会改变残差块的尺寸,只用于改变残差块的维度。在 Resnet50 网 络 结 构 中 , 残 差 块 都 有 三 层 卷 积 , 那 网 络 总 共 有1+3×(3+4+6+3)=49个卷积层,加上最后的全连接层总共是 50 层,这也是Resnet50 名称的由来。网络的输入为 224×224×3,经过前五部分的卷积计算,输出为 7×7×2048,池化层会将其转化成一个特征向量,最后分类器会对这个特征向量进行计算并输出类别概率。

运行train.py即可。

train.py

import torch
from torchvision import datasets, models, transforms
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
import timeimport numpy as np
import matplotlib.pyplot as plt
import os
from tqdm import tqdm# 一、建立数据集
# animals-6
#   --train
#       |--dog
#       |--cat
#       ...
#   --valid
#       |--dog
#       |--cat
#       ...
#   --test
#       |--dog
#       |--cat
#       ...
# 我的数据集中 train 中每个类别60张图片,valid 中每个类别 10 张图片,test 中每个类别几张到几十张不等,一共 6 个类别。# 二、数据增强
# 建好的数据集在输入网络之前先进行数据增强,包括随机 resize 裁剪到 256 x 256,随机旋转,随机水平翻转,中心裁剪到 224 x 224,转化成 Tensor,正规化等。
image_transforms = {'train': transforms.Compose([transforms.RandomResizedCrop(size=256, scale=(0.8, 1.0)),transforms.RandomRotation(degrees=15),transforms.RandomHorizontalFlip(),transforms.CenterCrop(size=224),transforms.ToTensor(),transforms.Normalize([0.485, 0.456, 0.406],[0.229, 0.224, 0.225])]),'valid': transforms.Compose([transforms.Resize(size=256),transforms.CenterCrop(size=224),transforms.ToTensor(),transforms.Normalize([0.485, 0.456, 0.406],[0.229, 0.224, 0.225])])
}# 三、加载数据
# torchvision.transforms包DataLoader是 Pytorch 重要的特性,它们使得数据增加和加载数据变得非常简单。
# 使用 DataLoader 加载数据的时候就会将之前定义的数据 transform 就会应用的数据上了。
dataset = 'skin-cancer-detection'
train_directory = './skin-cancer-detection/train'
valid_directory = './skin-cancer-detection/val'batch_size = 32
num_classes = 9 #分类种类数
print(train_directory)
data = {'train': datasets.ImageFolder(root=train_directory, transform=image_transforms['train']),'valid': datasets.ImageFolder(root=valid_directory, transform=image_transforms['valid'])
}
print("训练集图片类别及其对应编号(种类名:编号):",data['train'].class_to_idx)
print("测试集图片类别及其对应编号:",data['valid'].class_to_idx)train_data_size = len(data['train'])
valid_data_size = len(data['valid'])train_data = DataLoader(data['train'], batch_size=batch_size, shuffle=True, num_workers=0)
valid_data = DataLoader(data['valid'], batch_size=batch_size, shuffle=True, num_workers=0)print("训练集图片数量:",train_data_size, "测试集图片数量:",valid_data_size)# 四、迁移学习
# 这里使用ResNet-50的预训练模型。
#resnet50 = models.resnet50(pretrained=True)
resnet50 = models.resnet50(weights=models.ResNet50_Weights.IMAGENET1K_V1)# 在PyTorch中加载模型时,所有参数的‘requires_grad’字段默认设置为true。这意味着对参数值的每一次更改都将被存储,以便在用于训练的反向传播图中使用。
# 这增加了内存需求。由于预训练的模型中的大多数参数已经训练好了,因此将requires_grad字段重置为false。
for param in resnet50.parameters():param.requires_grad = False# 为了适应自己的数据集,将ResNet-50的最后一层替换为,将原来最后一个全连接层的输入喂给一个有256个输出单元的线性层,接着再连接ReLU层和Dropout层,然后是256 x 6的线性层,输出为6通道的softmax层。
fc_inputs = resnet50.fc.in_features
resnet50.fc = nn.Sequential(nn.Linear(fc_inputs, 256),nn.ReLU(),nn.Dropout(0.4),nn.Linear(256, num_classes),nn.LogSoftmax(dim=1)
)# 用GPU进行训练。
resnet50 = resnet50.to('cuda:0')# 定义损失函数和优化器。
loss_func = nn.NLLLoss()
optimizer = optim.Adam(resnet50.parameters())# 五、训练
def train_and_valid(model, loss_function, optimizer, epochs=25):device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")history = []best_acc = 0.0best_epoch = 0for epoch in range(epochs):epoch_start = time.time()print("Epoch: {}/{}".format(epoch+1, epochs))model.train()train_loss = 0.0train_acc = 0.0valid_loss = 0.0valid_acc = 0.0for i, (inputs, labels) in enumerate(tqdm(train_data)):inputs = inputs.to(device)labels = labels.to(device)#因为这里梯度是累加的,所以每次记得清零optimizer.zero_grad()outputs = model(inputs)loss = loss_function(outputs, labels)print("标签值:",labels)print("输出值:",outputs)loss.backward()optimizer.step()train_loss += loss.item() * inputs.size(0)ret, predictions = torch.max(outputs.data, 1)correct_counts = predictions.eq(labels.data.view_as(predictions))acc = torch.mean(correct_counts.type(torch.FloatTensor))train_acc += acc.item() * inputs.size(0)with torch.no_grad():model.eval()for j, (inputs, labels) in enumerate(tqdm(valid_data)):inputs = inputs.to(device)labels = labels.to(device)outputs = model(inputs)loss = loss_function(outputs, labels)valid_loss += loss.item() * inputs.size(0)ret, predictions = torch.max(outputs.data, 1)correct_counts = predictions.eq(labels.data.view_as(predictions))acc = torch.mean(correct_counts.type(torch.FloatTensor))valid_acc += acc.item() * inputs.size(0)avg_train_loss = train_loss/train_data_sizeavg_train_acc = train_acc/train_data_sizeavg_valid_loss = valid_loss/valid_data_sizeavg_valid_acc = valid_acc/valid_data_sizehistory.append([avg_train_loss, avg_valid_loss, avg_train_acc, avg_valid_acc])if best_acc < avg_valid_acc:best_acc = avg_valid_accbest_epoch = epoch + 1epoch_end = time.time()print("Epoch: {:03d}, Training: Loss: {:.4f}, Accuracy: {:.4f}%, \n\t\tValidation: Loss: {:.4f}, Accuracy: {:.4f}%, Time: {:.4f}s".format(epoch+1, avg_valid_loss, avg_train_acc*100, avg_valid_loss, avg_valid_acc*100, epoch_end-epoch_start))print("Best Accuracy for validation : {:.4f} at epoch {:03d}".format(best_acc, best_epoch))torch.save(model, 'models/'+dataset+'_model_'+str(epoch+1)+'.pt')return model, historynum_epochs = 100 #训练周期数
trained_model, history = train_and_valid(resnet50, loss_func, optimizer, num_epochs)
torch.save(history, 'models/'+dataset+'_history.pt')history = np.array(history)
plt.plot(history[:, 0:2])
plt.legend(['Tr Loss', 'Val Loss'])
plt.xlabel('Epoch Number')
plt.ylabel('Loss')
plt.ylim(0, 1)
plt.savefig(dataset+'_loss_curve.png')
plt.show()plt.plot(history[:, 2:4])
plt.legend(['Tr Accuracy', 'Val Accuracy'])
plt.xlabel('Epoch Number')
plt.ylabel('Accuracy')
plt.ylim(0, 1)
plt.savefig(dataset+'_accuracy_curve.png')
plt.show()

测试:图片名改下即可。

import torch
from torchvision import  models, transforms
import torch.nn as nn
import cv2
classes = ["1","2","3","4","5","6","7","8","9"] #识别种类名称(顺序要与训练时的数据导入编号顺序对应,可以使用datasets.ImageFolder().class_to_idx来查看)transf = transforms.ToTensor()
device = torch.device('cuda:0')
num_classes = 2
model_path = "models/skin-cancer-detection_model_3.pt"
image_input = cv2.imread("ISIC_0000019.jpg")
image_input = transf(image_input)
image_input = torch.unsqueeze(image_input,dim=0).cuda()
#搭建模型
resnet50 = models.resnet50(pretrained=True)
for param in resnet50.parameters():param.requires_grad = Falsefc_inputs = resnet50.fc.in_features
resnet50.fc = nn.Sequential(nn.Linear(fc_inputs, 256),nn.ReLU(),nn.Dropout(0.4),nn.Linear(256, num_classes),nn.LogSoftmax(dim=1)
)
resnet50 = torch.load(model_path)outputs = resnet50(image_input)
value,id =torch.max(outputs,1)
print(outputs,"\n","结果是:",classes[id])

这篇关于yolov8实战第四天——yolov8图像分类 ResNet50图像分类(保姆式教程)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/553693

相关文章

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

SpringBoot 多环境开发实战(从配置、管理与控制)

《SpringBoot多环境开发实战(从配置、管理与控制)》本文详解SpringBoot多环境配置,涵盖单文件YAML、多文件模式、MavenProfile分组及激活策略,通过优先级控制灵活切换环境... 目录一、多环境开发基础(单文件 YAML 版)(一)配置原理与优势(二)实操示例二、多环境开发多文件版

Three.js构建一个 3D 商品展示空间完整实战项目

《Three.js构建一个3D商品展示空间完整实战项目》Three.js是一个强大的JavaScript库,专用于在Web浏览器中创建3D图形,:本文主要介绍Three.js构建一个3D商品展... 目录引言项目核心技术1. 项目架构与资源组织2. 多模型切换、交互热点绑定3. 移动端适配与帧率优化4. 可

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

基于C#实现PDF转图片的详细教程

《基于C#实现PDF转图片的详细教程》在数字化办公场景中,PDF文件的可视化处理需求日益增长,本文将围绕Spire.PDFfor.NET这一工具,详解如何通过C#将PDF转换为JPG、PNG等主流图片... 目录引言一、组件部署二、快速入门:PDF 转图片的核心 C# 代码三、分辨率设置 - 清晰度的决定因

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶

Python实战之SEO优化自动化工具开发指南

《Python实战之SEO优化自动化工具开发指南》在数字化营销时代,搜索引擎优化(SEO)已成为网站获取流量的重要手段,本文将带您使用Python开发一套完整的SEO自动化工具,需要的可以了解下... 目录前言项目概述技术栈选择核心模块实现1. 关键词研究模块2. 网站技术seo检测模块3. 内容优化分析模

Java 正则表达式的使用实战案例

《Java正则表达式的使用实战案例》本文详细介绍了Java正则表达式的使用方法,涵盖语法细节、核心类方法、高级特性及实战案例,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要... 目录一、正则表达式语法详解1. 基础字符匹配2. 字符类([]定义)3. 量词(控制匹配次数)4. 边

Java Scanner类解析与实战教程

《JavaScanner类解析与实战教程》JavaScanner类(java.util包)是文本输入解析工具,支持基本类型和字符串读取,基于Readable接口与正则分隔符实现,适用于控制台、文件输... 目录一、核心设计与工作原理1.底层依赖2.解析机制A.核心逻辑基于分隔符(delimiter)和模式匹

Python内存优化的实战技巧分享

《Python内存优化的实战技巧分享》Python作为一门解释型语言,虽然在开发效率上有着显著优势,但在执行效率方面往往被诟病,然而,通过合理的内存优化策略,我们可以让Python程序的运行速度提升3... 目录前言python内存管理机制引用计数机制垃圾回收机制内存泄漏的常见原因1. 循环引用2. 全局变