【PythonRS】基于矢量范围批量下载遥感瓦片高清数据(天地图、高德、谷歌等)

本文主要是介绍【PythonRS】基于矢量范围批量下载遥感瓦片高清数据(天地图、高德、谷歌等),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        这个是之前写的代码了,正好今天有空所以就和大家分享一下。我们在处理项目时,有时候需要高清底图作为辅助数据源去对比数据,所以可能会需要卫星数据。所以今天就和大家分享一下如何使用Python基于矢量范围批量下载高清遥感瓦片数据。

1 读取矢量边界

        这里我们使用osgeo中的osr、ogr库去读取矢量的地理范围。之前也分享过,感兴趣的可以去Python&GIS专栏里面看一看。

def Open_Vector(path_shp):""":param path_shp: 输入84坐标矢量:return: 返回四至范围"""ds = ogr.Open(path_shp, True)# True表示以读写方式打开layer = ds.GetLayer(0)# 获取图层feature = layer.GetFeature(0)geom = feature.GetGeometryRef()# 获取该要素的地理空间范围left, right, down, up = geom.GetEnvelope()# 获取图层的地理范围return left, right, down, up

2 通过经纬度计算航带数

        这里没什么好说的,就是基础的公式,计算即可。这个函数在整个函数作为辅助函数,主程序会自己调用它。

def calculation_tile(lat, lon, zoom):""":param lat: 84坐标纬度:param lon: 84坐标经度:param zoom: 缩放级别:return: 瓦片的行列号"""# 将经纬度从WGS84坐标系转换为GCJ02坐标系# lon_deg,lat_deg = WGS84_To_GCJ02(lon_deg,lat_deg)# 根据缩放级别计算格网数量n = 2.0 ** zoom# 将纬度从度转换为弧度lat_radio = math.radians(lat)# 计算瓦片中的x坐标tile_x = int((lon + 180.0) / 360.0 * n)# 计算瓦片中的y坐标tile_y = int((1.0 - math.log(math.tan(lat_radio) + (1 / math.cos(lat_radio))) / math.pi) / 2.0 * n)# 返回计算得到的瓦片坐标(行和列)return tile_x, tile_y 

3 获取瓦片下载链接

        这里使用了基础的反爬虫方法,随机调用请求头。

def Get_image(url, x, y):agents = ['Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/535.1 (KHTML, like Gecko) Chrome/13.0.782.24 Safari/535.1','Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/534.27 (KHTML, like Gecko) Chrome/12.0.712.0 Safari/534.27','Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/60.0.3112.101 Safari''/537.36','Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US) AppleWebKit/532.5 (KHTML, like Gecko) Chrome/4.0.249.0 Safari''/532.5','Mozilla/5.0 (Windows; U; Windows NT 5.2; en-US) AppleWebKit/532.9 (KHTML, like Gecko) Chrome/5.0.310.0 Safari''/532.9','Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US) AppleWebKit/534.7 (KHTML, like Gecko) Chrome/7.0.514.0 Safari''/534.7','Mozilla/5.0 (Windows; U; Windows NT 6.0; en-US) AppleWebKit/534.14 (KHTML, like Gecko) Chrome/9.0.601.0 ''Safari/534.14','Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US) AppleWebKit/534.14 (KHTML, like Gecko) Chrome/10.0.601.0 ''Safari/534.14','Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US) AppleWebKit/534.20 (KHTML, like Gecko) Chrome/11.0.672.2 ''Safari/534.20',]try:# 打印下载成功的消息,显示瓦片的位置和下载状态print("瓦片" + str(x) + '_' + str(y) + '下载成功')# 创建一个请求对象,使用指定的URLrequests = urllib.request.Request(url)# 为请求添加一个随机的User-Agent头,以模拟不同的浏览器或客户端requests.add_header('User-Agent', random.choice(agents))  # 换用随机请求头# 使用指定的请求打开URL,并设置超时时间为60秒image = urllib.request.urlopen(requests, timeout=60)# 读取返回的图像数据image_io = image.read()# 使用BytesIO将图像数据转换为可处理的字节流对象image_bytes = io.BytesIO(image_io)# 使用PIL库打开图像image = Image.open(image_bytes)# 将图像从RGB格式转换为BGR格式(OpenCV需要的格式)image = cv2.cvtColor(np.asarray(image), cv2.COLOR_RGB2BGR)except EOFError:# 如果发生EOFError(可能由于网络问题、超时等),打印下载失败的消息并尝试重试print("瓦片" + str(x) + '_' + str(y) + '下载失败,正在重试......')Get_image(url, x, y)  # 递归调用Get_image函数进行重试# 返回处理后的图像数据return image

4 主程序

        这里就不过多解释了,我的代码注释非常完善,如果有什么不懂的,直接留言即可。

# -*- coding: utf-8 -*-
"""
@Time : 2023/4/9 14:37
@Auth : RS迷途小书童
@File :Vector Download Remote Sensing Tile Data.py
@IDE :PyCharm
@Purpose:根据矢量范围下载三方地图瓦片
@Web:博客地址:https://blog.csdn.net/m0_56729804
"""
import io
import cv2
import math
import random
import numpy as np
from osgeo import ogr
import urllib.request
from PIL import Imagedef Write_image(lat1, lon1, lat2, lon2, out_path):""":param lat1: 左上角纬度:param lon1: 左上角经度:param lat2: 右下角纬度:param lon2: 右下角经度:return: 返回瓦片影像"""zooms = list()# 创建一个空列表zooms,用于存储所有的缩放级别for i in range(1, 19):# 循环缩放级别col = calculation_tile(lat1, lon1, i)# 将经纬度转换为对应的地图瓦片编号,结果存储在col中row = calculation_tile(lat2, lon2, i)if col[0] - row[0] == 0 or col[1] - row[1] == 0:continueelse:zooms.append(i)# 如果差值不为0,将当前的缩放级别i添加到zooms列表中zoom = zooms[-1]# 获取zooms列表中的最后一个元素,即最大的缩放级别,并存储在zoom变量中left_up = calculation_tile(lat1, lon1, zoom)# 使用最大的缩放级别和第一个经纬度范围,调用函数获取左上角的地图瓦片编号,存储在left_up中right_down = calculation_tile(lat2, lon2, zoom)# 使用最大的缩放级别和第二个经纬度范围,调用函数获取右下角的地图瓦片编号,存储在right_down中images_columns = list()# 创建一个空列表images_columns,用于存储所有的地图瓦片图像列print("当前瓦片行数:", right_down[0]-left_up[0])print("当前瓦片列数:", right_down[1] - left_up[1])print("--------------------------------------数据获取--------------------------------------")for x in range(left_up[0], right_down[0]):# 循环行images_rows = list()# 创建一个空列表images_rows,用于存储所有的地图瓦片图像行for y in range(left_up[1], right_down[1]):# 循环列tile_url = 'http://t4.tianditu.com/DataServer?T=img_w&x='+str(x)+'&y='+str(y)+'&l='+str(zoom) + \'&tk=45c78b2bc2ecfa2b35a3e4e454ada5ce'image = Get_image(tile_url, x, y)cv2.imwrite(out_path + "/%s.jpg" % (str(x)+"_"+str(y)), image)images_rows.append(image)# 将获取到的瓦片图像添加到images_rows列表中,用于后续的图像合成img_column_new = np.vstack(images_rows)# 使用NumPy的v stack函数,将images_rows列表中的所有图像竖直堆叠起来,形成一个新的图像列images_columns.append(img_column_new)# 将这个新的图像列添加到images_columns列表中,用于后续的图像合成print("正在拼接瓦片数据......")result = np.hstack(images_columns)# 使用NumPy的h stack函数,将images_columns列表中的所有图像水平堆叠起来,形成一个最终的大图像print("正在保存瓦片数据......")cv2.imwrite(out_path + "/result.jpg", result)return result

5 总结

""" 
tile_url = 'http://www.google.cn/maps/vt/pb=!1m4!1m3!1i'+str(zoom)+'!2i'+str(x)+'!3i'+str(y)+'!2m3!1e0!2sm!3i345013117!3m8!2szh-CN!3scn!5e1105!12m4!1e68!2m2!1sset!2sRoadmap!4e0'
# Google地图瓦片
tile_url = 'http://mt3.google.cn/vt/lyrs=s@110&hl=zh-CN&gl=cn&src=app&x='+str(x)+'&y='+str(y)+'&z='+str(zoom)+'&s=G'
# Google影像瓦片
tile_url = 'http://t4.tianditu.com/DataServer?T=img_w&x='+str(x)+'&y='+str(y)+'&l='+str(zoom)+'&tk=45c78b2bc2ecfa2b35a3e4e454ada5ce'
# 天地图卫星数据,vec_w电子地图(2000坐标系)
"http://wprd01.is.autonavi.com/appmaptile?lang=zh_cn&size=1&scl=1&style=6&x=" + str(x) + "&y=" + str(y) + "&z=" + str(zoom) + "&ltype=3"
# 高德底图,偏移(火星坐标系)
"""

        这里输入的矢量需要是WGS84坐标系的经纬度,不能是投影坐标系哦。此外如果使用高德、百度等底图可能会有一定的偏移,因为我国需要加密成火星坐标系,但是还是可以用的。天地图就无所谓,它的坐标是准的。

这篇关于【PythonRS】基于矢量范围批量下载遥感瓦片高清数据(天地图、高德、谷歌等)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/551874

相关文章

Java注解之超越Javadoc的元数据利器详解

《Java注解之超越Javadoc的元数据利器详解》本文将深入探讨Java注解的定义、类型、内置注解、自定义注解、保留策略、实际应用场景及最佳实践,无论是初学者还是资深开发者,都能通过本文了解如何利用... 目录什么是注解?注解的类型内置注编程解自定义注解注解的保留策略实际用例最佳实践总结在 Java 编程

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

使用Python和Pyecharts创建交互式地图

《使用Python和Pyecharts创建交互式地图》在数据可视化领域,创建交互式地图是一种强大的方式,可以使受众能够以引人入胜且信息丰富的方式探索地理数据,下面我们看看如何使用Python和Pyec... 目录简介Pyecharts 简介创建上海地图代码说明运行结果总结简介在数据可视化领域,创建交互式地

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

SpringBoot整合mybatisPlus实现批量插入并获取ID详解

《SpringBoot整合mybatisPlus实现批量插入并获取ID详解》这篇文章主要为大家详细介绍了SpringBoot如何整合mybatisPlus实现批量插入并获取ID,文中的示例代码讲解详细... 目录【1】saveBATch(一万条数据总耗时:2478ms)【2】集合方式foreach(一万条数

使用Python实现矢量路径的压缩、解压与可视化

《使用Python实现矢量路径的压缩、解压与可视化》在图形设计和Web开发中,矢量路径数据的高效存储与传输至关重要,本文将通过一个Python示例,展示如何将复杂的矢量路径命令序列压缩为JSON格式,... 目录引言核心功能概述1. 路径命令解析2. 路径数据压缩3. 路径数据解压4. 可视化代码实现详解1

Pandas统计每行数据中的空值的方法示例

《Pandas统计每行数据中的空值的方法示例》处理缺失数据(NaN值)是一个非常常见的问题,本文主要介绍了Pandas统计每行数据中的空值的方法示例,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是空值?为什么要统计空值?准备工作创建示例数据统计每行空值数量进一步分析www.chinasem.cn处