基于Paddle的计算机视觉入门教程——第5讲 实战:PaddleX实现垃圾分类

本文主要是介绍基于Paddle的计算机视觉入门教程——第5讲 实战:PaddleX实现垃圾分类,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

PaddleX实现垃圾分类

B站教程地址

https://www.bilibili.com/video/BV18b4y1J7a6/

PaddleX的安装

pip install paddlex==2.1.0 -i https://mirror.baidu.com/pypi/simple

因为PaddleX依赖于pycocotools,如果报错:

Microsoft Visual C++ 14.0 is required

则需要安装相应工具,下载链接如下:

链接:https://pan.baidu.com/s/17pSEX9ZO28_OIPdaeNAe3A
提取码:xhu4

如果出现下载预训练模型报错

SSLError("Can't connect to HTTPS URL because the SSL module is not available)

需要安装OpenSLL工具,下载链接如下:

链接:https://pan.baidu.com/s/1Z3F9cIH3-6QrsqnAoK-pBw
提取码:ucko

数据集的准备

数据集下载链接:

链接:https://pan.baidu.com/s/1ZSHQft4eIpYHliKRxZcChQ
提取码:hce7

本次实战为图片分类任务数据集结构如下:

在这里插入图片描述

分别为分类的图片文件夹,建议有一个类别就建一个文件夹,方便管理。训练集和评价集的标签文件,格式如下:

./3/933.jpg 3
./2/1670.jpg 2
./2/2175.jpg 2
./1/934.jpg 1
./1/1653.jpg 1

前面为图片的相对路径,后面为对应的标签类别。labels.txt存放对应的标签,格式如下:

有害垃圾
可回收垃圾
厨房垃圾
其他垃圾

提供文件重命名的代码,用于每个文件夹里面图片的重命名

import osdef rename():res = os.listdir('./')for a in res:i = 0flag = os.path.isdir(a)if(flag == False):continuepath=afilelist=os.listdir(path)#该文件夹下所有的文件(包括文件夹)for files in filelist:#遍历所有文件i=i+1Olddir=os.path.join(path,files);#原来的文件路径                if os.path.isdir(Olddir):#如果是文件夹则跳过continuefilename=os.path.splitext(files)[0];#文件名filetype=os.path.splitext(files)[1];#文件扩展名Newdir=os.path.join(path,str(i)+filetype);#新的文件路径os.rename(Olddir,Newdir)#重命名
rename()

提供生成train.txt和eval.txt文件的代码,分类的比例为5:1

import os
import randomdef ReadFileDatas():FileNamelist = []file = open('train.txt','r+')for line in file:line=line.strip('\n') #删除每一行的\nFileNamelist.append(line)#print('len ( FileNamelist ) = ' ,len(FileNamelist))file.close()return FileNamelistdef WriteDatasToFile(listInfo):file_handle_train=open('train.txt',mode='w')file_handle_eval = open("eval.txt",mode='w')i = 0for idx in range(len(listInfo)):str = listInfo[idx]#查找最后一个 “_”的位置ndex = str.rfind('_')#print('ndex = ',ndex)#截取字符串str_houZhui = str[(ndex+1):]#print('str_houZhui = ',str_houZhui)str_Result = str  + '\n'           #+ str_houZhui+'\n'#print(str_Result)if(i%6 != 0):file_handle_train.write(str_Result)else:file_handle_eval.write(str_Result)i += 1file_handle_train.close()file_handle_eval.close()path = './'
res = os.listdir(path)
print(res)
with open("train.txt","w") as f:for i in res:if(os.path.isdir(i)):path1 = path + ires2 = os.listdir(path1)for j in res2:f.write(path1+"/"+j+" " + i +'\n')listFileInfo = ReadFileDatas()
#打乱列表中的顺序
random.shuffle(listFileInfo)
WriteDatasToFile(listFileInfo)

模型训练

借助于PaddleX,模型训练变得非常简单,主要分为数据集定义,数据增强算子定义,模型定义和模型训练四个步骤:

from paddlex import transforms as T
import paddlex as pdxtrain_transforms = T.Compose([          #定义训练集的数据增强算子T.RandomCrop(crop_size=224),T.RandomHorizontalFlip(),T.Normalize()])eval_transforms = T.Compose([			#定义评价集的数据增强算子T.ResizeByShort(short_size=256),T.CenterCrop(crop_size=224),T.Normalize()
])train_dataset = pdx.datasets.ImageNet(		#定义训练集data_dir='rubbish',file_list='rubbish/train.txt',label_list='rubbish/labels.txt',transforms=train_transforms,shuffle=True)
eval_dataset = pdx.datasets.ImageNet(		#定义评价集data_dir='rubbish',file_list='rubbish/eval.txt',label_list='rubbish/labels.txt',transforms=eval_transforms)num_classes = len(train_dataset.labels)
model = pdx.cls.MobileNetV3_small(num_classes=num_classes)		#定义分类模型model.train(num_epochs=10,										#模型训练train_dataset=train_dataset,train_batch_size=64,eval_dataset=eval_dataset,lr_decay_epochs=[4, 6, 8],save_dir='output/mobilenetv3_small',use_vdl=True)

具体参数的含义可以参照PaddleX的Github文档,在B站视频中也做了详细的讲解。

模型的预测

import paddlex as pdx
model = pdx.load_model('output/mobilenetv3_small/best_model')
result = model.predict('188.jpg')
print("Predict Result: ", result)

可以观察输出的结果是否正确。

模型训练的可视化

visualdl --logdir output/mobilenetv3_small --port 8001

打开浏览器输出网址,可以看到训练的各个参数曲线

这篇关于基于Paddle的计算机视觉入门教程——第5讲 实战:PaddleX实现垃圾分类的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/550213

相关文章

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

Java实现复杂查询优化的7个技巧小结

《Java实现复杂查询优化的7个技巧小结》在Java项目中,复杂查询是开发者面临的“硬骨头”,本文将通过7个实战技巧,结合代码示例和性能对比,手把手教你如何让复杂查询变得优雅,大家可以根据需求进行选择... 目录一、复杂查询的痛点:为何你的代码“又臭又长”1.1冗余变量与中间状态1.2重复查询与性能陷阱1.

Python内存优化的实战技巧分享

《Python内存优化的实战技巧分享》Python作为一门解释型语言,虽然在开发效率上有着显著优势,但在执行效率方面往往被诟病,然而,通过合理的内存优化策略,我们可以让Python程序的运行速度提升3... 目录前言python内存管理机制引用计数机制垃圾回收机制内存泄漏的常见原因1. 循环引用2. 全局变

python 线程池顺序执行的方法实现

《python线程池顺序执行的方法实现》在Python中,线程池默认是并发执行任务的,但若需要实现任务的顺序执行,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋... 目录方案一:强制单线程(伪顺序执行)方案二:按提交顺序获取结果方案三:任务间依赖控制方案四:队列顺序消

Redis实现分布式锁全过程

《Redis实现分布式锁全过程》文章介绍Redis实现分布式锁的方法,包括使用SETNX和EXPIRE命令确保互斥性与防死锁,Redisson客户端提供的便捷接口,以及Redlock算法通过多节点共识... 目录Redis实现分布式锁1. 分布式锁的基本原理2. 使用 Redis 实现分布式锁2.1 获取锁

PostgreSQL简介及实战应用

《PostgreSQL简介及实战应用》PostgreSQL是一种功能强大的开源关系型数据库管理系统,以其稳定性、高性能、扩展性和复杂查询能力在众多项目中得到广泛应用,本文将从基础概念讲起,逐步深入到高... 目录前言1. PostgreSQL基础1.1 PostgreSQL简介1.2 基础语法1.3 数据库

Python WebSockets 库从基础到实战使用举例

《PythonWebSockets库从基础到实战使用举例》WebSocket是一种全双工、持久化的网络通信协议,适用于需要低延迟的应用,如实时聊天、股票行情推送、在线协作、多人游戏等,本文给大家介... 目录1. 引言2. 为什么使用 WebSocket?3. 安装 WebSockets 库4. 使用 We

Linux实现查看某一端口是否开放

《Linux实现查看某一端口是否开放》文章介绍了三种检查端口6379是否开放的方法:通过lsof查看进程占用,用netstat区分TCP/UDP监听状态,以及用telnet测试远程连接可达性... 目录1、使用lsof 命令来查看端口是否开放2、使用netstat 命令来查看端口是否开放3、使用telnet

使用SpringBoot+InfluxDB实现高效数据存储与查询

《使用SpringBoot+InfluxDB实现高效数据存储与查询》InfluxDB是一个开源的时间序列数据库,特别适合处理带有时间戳的监控数据、指标数据等,下面详细介绍如何在SpringBoot项目... 目录1、项目介绍2、 InfluxDB 介绍3、Spring Boot 配置 InfluxDB4、I

基于Java和FFmpeg实现视频压缩和剪辑功能

《基于Java和FFmpeg实现视频压缩和剪辑功能》在视频处理开发中,压缩和剪辑是常见的需求,本文将介绍如何使用Java结合FFmpeg实现视频压缩和剪辑功能,同时去除数据库操作,仅专注于视频处理,需... 目录引言1. 环境准备1.1 项目依赖1.2 安装 FFmpeg2. 视频压缩功能实现2.1 主要功