[OCR]Python 3 下的文字识别CnOCR

2023-12-29 06:44
文章标签 python 文字 识别 ocr cnocr

本文主要是介绍[OCR]Python 3 下的文字识别CnOCR,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1  CnOCR

2 安装

3 实践


1  CnOCR

CnOCR 是 Python 3 下的文字识别Optical Character Recognition,简称OCR)工具包。

工具包支持简体中文繁体中文(部分模型)、英文数字的常见字符识别,支持竖排文字的识别。同时,自带了20+个训练好的识别模型,适用于不同应用场景,安装后即可直接使用。

同时,CnOCR也提供简单的训练命令供使用者训练自己的模型。

 2 安装

安装cnocr的命令如下:

pip --default-timeout=100 install cnocr -i http://pypi.douban.com/simple --trusted-host pypi.douban.com

下述的字体文件用于实践中的中文识别结果的展示。

①字体文件

    SimSun:宋体

    Microsoft YaHei:微软雅黑

    FangSong:仿宋

    KaiTi:楷体

    STXihei:华文细黑

    STSong:华文宋体

    STKaiti:华文楷体

    STFangsong:华文仿宋

    SimHei:黑体

②下载地址

部分中文字体文件下载

链接: https://pan.baidu.com/s/1pCEreBBHPJKLmWPJmh4OPg 提取码: hope

 3 实践

  • ①代码
from cnocr import CnOcr
import matplotlib.pyplot as plt
from PIL import Image, ImageDraw, ImageFont
import cv2
import numpy as np
def get_bbox(array):"将结果中的position信息的四个点的坐标信息转换"x1 = array[0][0]y1 = array[0][1]pt1 = (int(x1), int(y1))x2 = array[2][0]y2 = array[2][1]pt2 = (int(x2), int(y2))return pt1, pt2
def dealImg(img):b, g, r = cv2.split(img)img_rgb = cv2.merge([r, g, b])return img_rgb
def create_blank_img(img_w, img_h):blank_img = np.ones(shape=[img_h, img_w], dtype=np.int8) * 255# blank_img[:, img_w - 1:] = 0blank_img = Image.fromarray(blank_img).convert("RGB")blank_img = blank_img.__array__()return blank_img
def Draw_OCRResult(blank_img, pt1, pt2, text):cv2.rectangle(blank_img, pt1, pt2, color=[255, 255, 0], thickness=3)data = Image.fromarray(blank_img)draw = ImageDraw.Draw(data)fontStyle = ImageFont.truetype("ChineseFonts/simsun.ttc", size=30, encoding="utf-8")(x, y) = pt1draw.text((x+5, y+5), text=text, fill=(0, 0, 0), font=fontStyle)blank_img = np.asarray(data)# cv2.putText(img, temp["text"], pt1, cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 0), 2)return blank_img
def _main(img_path):im = cv2.imread(img_path)img_h, img_w, _ = im.shapeblank_img = create_blank_img(img_w, img_h)# 所有参数都使用默认值ocr = CnOcr()result = ocr.ocr(img_path)# print(result)for temp in result:print(temp["text"])# print(temp["score"])pt1, pt2 = get_bbox(temp["position"])blank_img = Draw_OCRResult(blank_img, pt1, pt2, temp["text"])fig = plt.figure(figsize=(10, 10))im = dealImg(im)img = dealImg(blank_img)titles = ["img", "result"]images = [im, img]for i in range(2):plt.subplot(1, 2, i + 1), plt.imshow(images[i], "gray")plt.title("{}".format(titles[i]), fontsize=20, ha='center')plt.xticks([]), plt.yticks([])# plt.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=0.3, hspace=0)# plt.tight_layout()plt.show()fig.savefig('test_results.jpg', bbox_inches='tight')
if __name__ == '__main__':_main("test.png")pass
  • ①结果图

  • ②代码
from cnocr import CnOcr
from PIL import Image, ImageDraw, ImageFont
import cv2
import numpy as np
def get_bbox(array):"将结果中的position信息的四个点的坐标信息转换"x1 = array[0][0]y1 = array[0][1]pt1 = (int(x1), int(y1))x2 = array[2][0]y2 = array[2][1]pt2 = (int(x2), int(y2))return pt1, pt2
def dealImg(img):b, g, r = cv2.split(img)img_rgb = cv2.merge([r, g, b])return img_rgb
def create_blank_img(img_w, img_h):blank_img = np.ones(shape=[img_h, img_w], dtype=np.int8) * 255# blank_img[:, img_w - 1:] = 0blank_img = Image.fromarray(blank_img).convert("RGB")blank_img = blank_img.__array__()return blank_img
def Draw_OCRResult(blank_img, pt1, pt2, text):cv2.rectangle(blank_img, pt1, pt2, color=[255, 255, 0], thickness=3)data = Image.fromarray(blank_img)draw = ImageDraw.Draw(data)fontStyle = ImageFont.truetype("ChineseFonts/simsun.ttc", size=30, encoding="utf-8")(x, y) = pt1draw.text((x+5, y+5), text=text, fill=(0, 0, 0), font=fontStyle)blank_img = np.asarray(data)# cv2.putText(img, temp["text"], pt1, cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 0), 2)return blank_img
def _main(img_path):im = cv2.imread(img_path)img_h, img_w, _ = im.shapeblank_img = create_blank_img(img_w, img_h)# 所有参数都使用默认值ocr = CnOcr()result = ocr.ocr(img_path)# print(result)for temp in result:print(temp["text"])# print(temp["score"])pt1, pt2 = get_bbox(temp["position"])blank_img = Draw_OCRResult(blank_img, pt1, pt2, temp["text"])images = np.concatenate((im, blank_img), axis=1)cv2.imwrite('OCR_result.jpg', images)
if __name__ == '__main__':_main("test.png")pass
  • ②结果图

茫茫人海,遇见便是缘,愿君事事顺心,一切都好。 感恩遇见!

这篇关于[OCR]Python 3 下的文字识别CnOCR的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/548665

相关文章

使用Python将PDF表格自动提取并写入Word文档表格

《使用Python将PDF表格自动提取并写入Word文档表格》在实际办公与数据处理场景中,PDF文件里的表格往往无法直接复制到Word中,本文将介绍如何使用Python从PDF文件中提取表格数据,并将... 目录引言1. 加载 PDF 文件并准备 Word 文档2. 提取 PDF 表格并创建 Word 表格

使用Python实现局域网远程监控电脑屏幕的方法

《使用Python实现局域网远程监控电脑屏幕的方法》文章介绍了两种使用Python在局域网内实现远程监控电脑屏幕的方法,方法一使用mss和socket,方法二使用PyAutoGUI和Flask,每种方... 目录方法一:使用mss和socket实现屏幕共享服务端(被监控端)客户端(监控端)方法二:使用PyA

Python列表的创建与删除的操作指南

《Python列表的创建与删除的操作指南》列表(list)是Python中最常用、最灵活的内置数据结构之一,它支持动态扩容、混合类型、嵌套结构,几乎无处不在,但你真的会创建和删除列表吗,本文给大家介绍... 目录一、前言二、列表的创建方式1. 字面量语法(最常用)2. 使用list()构造器3. 列表推导式

Python使用Matplotlib和Seaborn绘制常用图表的技巧

《Python使用Matplotlib和Seaborn绘制常用图表的技巧》Python作为数据科学领域的明星语言,拥有强大且丰富的可视化库,其中最著名的莫过于Matplotlib和Seaborn,本篇... 目录1. 引言:数据可视化的力量2. 前置知识与环境准备2.1. 必备知识2.2. 安装所需库2.3

Python数据验证神器Pydantic库的使用和实践中的避坑指南

《Python数据验证神器Pydantic库的使用和实践中的避坑指南》Pydantic是一个用于数据验证和设置的库,可以显著简化API接口开发,文章通过一个实际案例,展示了Pydantic如何在生产环... 目录1️⃣ 崩溃时刻:当你的API接口又双叒崩了!2️⃣ 神兵天降:3行代码解决验证难题3️⃣ 深度

Python+FFmpeg实现视频自动化处理的完整指南

《Python+FFmpeg实现视频自动化处理的完整指南》本文总结了一套在Python中使用subprocess.run调用FFmpeg进行视频自动化处理的解决方案,涵盖了跨平台硬件加速、中间素材处理... 目录一、 跨平台硬件加速:统一接口设计1. 核心映射逻辑2. python 实现代码二、 中间素材处

python中的flask_sqlalchemy的使用及示例详解

《python中的flask_sqlalchemy的使用及示例详解》文章主要介绍了在使用SQLAlchemy创建模型实例时,通过元类动态创建实例的方式,并说明了如何在实例化时执行__init__方法,... 目录@orm.reconstructorSQLAlchemy的回滚关联其他模型数据库基本操作将数据添

Python实现快速扫描目标主机的开放端口和服务

《Python实现快速扫描目标主机的开放端口和服务》这篇文章主要为大家详细介绍了如何使用Python编写一个功能强大的端口扫描器脚本,实现快速扫描目标主机的开放端口和服务,感兴趣的小伙伴可以了解下... 目录功能介绍场景应用1. 网络安全审计2. 系统管理维护3. 网络故障排查4. 合规性检查报错处理1.

Python轻松实现Word到Markdown的转换

《Python轻松实现Word到Markdown的转换》在文档管理、内容发布等场景中,将Word转换为Markdown格式是常见需求,本文将介绍如何使用FreeSpire.DocforPython实现... 目录一、工具简介二、核心转换实现1. 基础单文件转换2. 批量转换Word文件三、工具特性分析优点局

Python中4大日志记录库比较的终极PK

《Python中4大日志记录库比较的终极PK》日志记录框架是一种工具,可帮助您标准化应用程序中的日志记录过程,:本文主要介绍Python中4大日志记录库比较的相关资料,文中通过代码介绍的非常详细,... 目录一、logging库1、优点2、缺点二、LogAid库三、Loguru库四、Structlogphp