一行代码弄懂数据,pandas最佳搭档就是ta了

2023-12-29 02:58

本文主要是介绍一行代码弄懂数据,pandas最佳搭档就是ta了,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

引言

在第一次导入新数据集时,我们首先要做的是了解数据。这包括确定特定预测变量的范围,识别每个预测变量的数据类型以及计算每个预测变量的缺失值的数量或百分比等步骤。这一步通常被称为探索性数据分析(EDA,exploratory data analysis)。

pandas库提供了许多非常有用的功能来帮助我们完成EDA。但是,在能够应用这些功能之前,通常我们必须先使用更普遍的功能,如 df.describe()。不过这些函数提供的功能仍是有限的,并且不同新数据集的初步EDA工作流,大多数情况下是非常相似。

作为一个特别不喜欢重复性任务的人,我最近在寻找合适的工具,幸运地发现了 pandas-profiling。它没有一次只给用户提供一种输出,而是快速生成一个内容异常丰富的HTML文件,其中包含有进行更具体的数据分析前可能需要了解的大部分内容。

接下来,我将向您介绍在Titanic数据集中应用pandas-profiling。

更快完成 EDA

由于数据类型丰富、缺失值较多,我选择在泰坦尼克号数据集上应用pandas-profiling。在我看来,pandas-profiling尤其适合当数据尚未清理并仍需要进一步个性化调整的数据集。为了更好完成精细调整,你需要知道从哪里开始,以及重点要关注什么。这是pandas-profiling的用武之地。

首先,让我们导入数据,并使用pandas来检索一些描述性统计信息:

'''
遇到问题没人解答?小编创建了一个Python学习交流QQ群:857662006 寻找有志同道合的小伙伴,互帮互助,
群里还有不错的视频学习教程和PDF电子书!
'''
# 导入相关包
import pandas as pd
import pandas_profiling
import numpy as np# 导入数据
df = pd.read_csv('/Users/lukas/Downloads/titanic/train.csv')# 描述性统计信息
df.describe()

上述代码执行后,会产生如下输出:
在这里插入图片描述
虽然上面的输出包含大量信息,但它并没有告诉您可能感兴趣的所有内容。例如,你知道了数据框有891行。如果要验证,则必须添加另一行代码以确定数据框的长度。虽然这些计算并不是非常耗时,但一次又一次地重复这些计算确实占用了时间,而您本可以用在清理数据上。

概览

现在,让我们使用pandas-profiling做同样的事情:

pandas_profiling.ProfileReport(df)

运行这行代码将创建数据集的HTML EDA报告。运行代码后,结果将直接内联在 notebook 中; 但是,你也可以选择将EDA报告另存为HTML文件,以便共享。

EDA报告的第一部分,是概述部分,提供了数据的基本信息(观察数量,变量数量等)。它还会输出一个警告列表,告诉你在何处仔细检查数据,并重点清理哪些数据。
在这里插入图片描述
单变量 EDA

概述之后,EDA报告为您提供有关每个特定变量的洞察。其中还包括描述每个变量分布的可视化小图:

在这里插入图片描述
数字变量 ‘Age’ 的输出

如上所示,pandas-profiling为您提供了一些有用的指标,例如缺失值的百分比和数量,以及我们之前看到的描述性统计数据。由于’Age’是一个数字变量,使用直方图可视化其分布告诉我们,这个变量似乎是向右偏的。

类型变量的输出,与数字变量仅有很小的变化:
在这里插入图片描述
类型变量 ‘Sex’ 的输出

pandas-profiling并不计算均值、最小值和最大值,而是计算分类变量的类计数。由于’Sex’是一个二元变量,我们只找到两个不同的计数。

你可能想知道pandas-profiling究竟是如何计算它的输出的。幸运的是,我们可以在[GitHub]上找到源代码。由于我喜欢在代码中制作不必要的黑盒,我下面将快速深入研究数字变量的源代码:

'''
遇到问题没人解答?小编创建了一个Python学习交流QQ群:857662006 寻找有志同道合的小伙伴,互帮互助,
群里还有不错的视频学习教程和PDF电子书!
'''
def describe_numeric_1d(series, **kwargs):"""Compute summary statistics of a numerical (`TYPE_NUM`) variable (a Series).Also create histograms (mini an full) of its distribution.Parameters----------series : SeriesThe variable to describe.Returns-------SeriesThe description of the variable as a Series with index being stats keys."""# Format a number as a percentage. For example 0.25 will be turned to 25%._percentile_format = "{:.0%}"stats = dict()stats['type'] = base.TYPE_NUMstats['mean'] = series.mean()stats['std'] = series.std()stats['variance'] = series.var()stats['min'] = series.min()stats['max'] = series.max()stats['range'] = stats['max'] - stats['min']# To avoid to compute it several times_series_no_na = series.dropna()for percentile in np.array([0.05, 0.25, 0.5, 0.75, 0.95]):# The dropna() is a workaround for https://github.com/pydata/pandas/issues/13098stats[_percentile_format.format(percentile)] = _series_no_na.quantile(percentile)stats['iqr'] = stats['75%'] - stats['25%']stats['kurtosis'] = series.kurt()stats['skewness'] = series.skew()stats['sum'] = series.sum()stats['mad'] = series.mad()stats['cv'] = stats['std'] / stats['mean'] if stats['mean'] else np.NaNstats['n_zeros'] = (len(series) - np.count_nonzero(series))stats['p_zeros'] = stats['n_zeros'] * 1.0 / len(series)# Histogramsstats['histogram'] = histogram(series, **kwargs)stats['mini_histogram'] = mini_histogram(series, **kwargs)return pd.Series(stats, name=series.name)

虽然这可能看起来像一个巨大的代码块,但它实际上很容易理解。Pandas-profiling的源代码中引入了另一个确定每个变量类型的函数。如果变量被识别为数字变量,上面的函数将产生之前显示的输出。此函数使用的是基本的pandas Series 操作,例如series.mean(),并将结果存储在 stats 字典中。图表则是使用matplotlib的matplotlib.pyplot.hist函数的改编版本生成的,目的是为了能够处理各种类型的数据集。

相关性与样本

在每个特定变量的EDA下,pandas-profiling还将输出Pearson和Spearman相关性矩阵。

在这里插入图片描述

Pearson 相关性矩阵

如果你愿意,可以在生成报告的初始代码行中设置一些相关阈值。通过这样做,你可以调整为你认为合适的相关性强度。

最后,pandas-profiling将输出代码样本。严格来说,这不是代码样本,只是数据的头部。当前几个观察结果不能代表数据的一般特征时,这可能会导致问题。
在这里插入图片描述
因此,我建议不要使用最后一个输出进行初始分析,而是运行df.sample(5),它将从您的数据集中随机选择五个观察值。

结论

总而言之,pandas-profiling提供了一些有用的功能,特别是你的主要目标是快速理解您数据或以可视格式与他人分享EDA。当然,它并没有让EDA变得自动化,深入的个性化调整,仍必须要手动完成。

项目地址:https://github.com/pandas-profiling

这篇关于一行代码弄懂数据,pandas最佳搭档就是ta了的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/548136

相关文章

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

MyBatis-Plus 自动赋值实体字段最佳实践指南

《MyBatis-Plus自动赋值实体字段最佳实践指南》MyBatis-Plus通过@TableField注解与填充策略,实现时间戳、用户信息、逻辑删除等字段的自动填充,减少手动赋值,提升开发效率与... 目录1. MyBATis-Plus 自动赋值概述1.1 适用场景1.2 自动填充的原理1.3 填充策略

C#监听txt文档获取新数据方式

《C#监听txt文档获取新数据方式》文章介绍通过监听txt文件获取最新数据,并实现开机自启动、禁用窗口关闭按钮、阻止Ctrl+C中断及防止程序退出等功能,代码整合于主函数中,供参考学习... 目录前言一、监听txt文档增加数据二、其他功能1. 设置开机自启动2. 禁止控制台窗口关闭按钮3. 阻止Ctrl +

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

C#解析JSON数据全攻略指南

《C#解析JSON数据全攻略指南》这篇文章主要为大家详细介绍了使用C#解析JSON数据全攻略指南,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、为什么jsON是C#开发必修课?二、四步搞定网络JSON数据1. 获取数据 - HttpClient最佳实践2. 动态解析 - 快速