python生成随机数:uniform(), randint(), gauss(), expovariate()

2023-12-29 00:38

本文主要是介绍python生成随机数:uniform(), randint(), gauss(), expovariate(),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 模块:random内建模块,伪随机数生成器

使用Mersenne Twister的伪随机数生成器PRNG进行生成,它以一个确定的数字作为属于,并为其生成一个随机数;为了安全起见,不要用PRNG生成随机数,要用secrets模块的真随机数TRNG生成;

2 播种随机数,即用随机数种子seed控制随机数

>>> import random
## 1、当不指定种子seed时,PRNG每次生成的数不一样
>>> print('Random Number 1=>',random.random())
Random Number 1=> 0.21008902332926982
>>> print('Random Number 2=>',random.random())
Random Number 2=> 0.434434837731393## 2、当指定种子seed时,PRNG每次生成的数是一样的,所以称为伪随机数
>>> random.seed(42)
>>> print('Random Number 1=>',random.random())
Random Number 1=> 0.6394267984578837
>>> random.seed(42)
>>> print('Random Number 2=>',random.random())
Random Number 2=> 0.6394267984578837

*3 在已知的范围内生成随机数,例如[2, 5],那就可以random.random()3 + 2, uniform(2,5), randint(2,5)

'''
遇到问题没人解答?小编创建了一个Python学习交流QQ群:778463939
寻找有志同道合的小伙伴,互帮互助,群里还有不错的视频学习教程和PDF电子书!
'''
## 1、random.random()*3 + 2
>>> print('Random Number in range(2,8)=>', random.random()*6+2)
Random Number in range(2,8)=> 2.1500645313360014## 2、uniform():获取开始值和结束值作为参数,返回一个浮点型的随机数
>>> print('Random Number in range(2,8)=>', random.uniform(2,8))
Random Number in range(2,8)=> 3.6501759102147155## 3、randint():和uniform相似,不同的是返回值为一个整数
>>> print('Random Number in range(2,8)=>', random.randint(2,8))
Random Number in range(2,8)=> 3

4 从列表中随机选择一个值:choice(), choices()

'''
遇到问题没人解答?小编创建了一个Python学习交流QQ群:778463939
寻找有志同道合的小伙伴,互帮互助,群里还有不错的视频学习教程和PDF电子书!
'''
## 1、choice会从这个列表中随机选择一个值
>>> a=[5,9,20,10,2,8]
>>> print('Randomly picked number=>',random.choice(a))
Randomly picked number=> 9
>>> print('Randomly picked number=>',random.choice(a))
Randomly picked number=> 8
>>> print('Randomly picked number=>',random.choice(a))
Randomly picked number=> 5## 2、choices会从这个列表中随机选择多个值(随机数的数量可以超过列表程度)
>>> print('Randomly picked number=>',random.choices(a,k=3))
Randomly picked number=> [5, 20, 5]
>>> print('Randomly picked number=>',random.choices(a,k=3))
Randomly picked number=> [9, 10, 5]
>>> print('Randomly picked number=>',random.choices(a,k=3))
Randomly picked number=> [9, 10, 10]## 3、choices利用weights将数组作为权重传递,增加每个值被选取的可能性
>>> print('Randomly picked number=>',random.choices(a,weights=[1,1,1,3,1,1],k=3))
Randomly picked number=> [5, 5, 2]
>>> print('Randomly picked number=>',random.choices(a,weights=[1,1,1,3,1,1],k=3))
Randomly picked number=> [10, 2, 10]
>>> print('Randomly picked number=>',random.choices(a,weights=[1,1,1,3,1,1],k=3))
Randomly picked number=> [10, 8, 10]

5 shuffling改组列表,对列表随机重排

>>> print('Original list=>',a)
Original list=> [5, 9, 20, 10, 2, 8]
>>> random.shuffle(a)
>>> print('Shuffled list=>',a)
Shuffled list=> [10, 5, 8, 9, 2, 20]

6 根据概率分布生成随机数:gauss(), expovariate()

(1)高斯分布gauss()

'''
遇到问题没人解答?小编创建了一个Python学习交流QQ群:778463939
寻找有志同道合的小伙伴,互帮互助,群里还有不错的视频学习教程和PDF电子书!
'''
>>> import random
>>> import matplotlib.pyplot as plt
>>> temp = []
>>> for i in range(1000):
... temp.append(random.gauss(0,1))
...
>>> plt.hist(temp, bins=30)
>>> plt.show()

在这里插入图片描述
(2)变数分布expovariate():以lambda的值作为参数,lambda为正,则返回从0到正无穷的值;如果lambda为负,则返回从负无穷到0的值

>>> print('Random number from exponential distribution=>',random.expovariate(10))
Random number from exponential distribution=> 0.012164560954097013
>>> print('Random number from exponential distribution=>',random.expovariate(-1))
Random number from exponential distribution=> -0.6461397037921695

(3)伯努利分布
(4)均匀分布
(5)二项分布
(6)正太分布
(7)泊松分布

这篇关于python生成随机数:uniform(), randint(), gauss(), expovariate()的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/547824

相关文章

Python FastMCP构建MCP服务端与客户端的详细步骤

《PythonFastMCP构建MCP服务端与客户端的详细步骤》MCP(Multi-ClientProtocol)是一种用于构建可扩展服务的通信协议框架,本文将使用FastMCP搭建一个支持St... 目录简介环境准备服务端实现(server.py)客户端实现(client.py)运行效果扩展方向常见问题结

详解如何使用Python构建从数据到文档的自动化工作流

《详解如何使用Python构建从数据到文档的自动化工作流》这篇文章将通过真实工作场景拆解,为大家展示如何用Python构建自动化工作流,让工具代替人力完成这些数字苦力活,感兴趣的小伙伴可以跟随小编一起... 目录一、Excel处理:从数据搬运工到智能分析师二、PDF处理:文档工厂的智能生产线三、邮件自动化:

Python实现自动化Word文档样式复制与内容生成

《Python实现自动化Word文档样式复制与内容生成》在办公自动化领域,高效处理Word文档的样式和内容复制是一个常见需求,本文将展示如何利用Python的python-docx库实现... 目录一、为什么需要自动化 Word 文档处理二、核心功能实现:样式与表格的深度复制1. 表格复制(含样式与内容)2

python获取cmd环境变量值的实现代码

《python获取cmd环境变量值的实现代码》:本文主要介绍在Python中获取命令行(cmd)环境变量的值,可以使用标准库中的os模块,需要的朋友可以参考下... 前言全局说明在执行py过程中,总要使用到系统环境变量一、说明1.1 环境:Windows 11 家庭版 24H2 26100.4061

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷

Python数据分析与可视化的全面指南(从数据清洗到图表呈现)

《Python数据分析与可视化的全面指南(从数据清洗到图表呈现)》Python是数据分析与可视化领域中最受欢迎的编程语言之一,凭借其丰富的库和工具,Python能够帮助我们快速处理、分析数据并生成高质... 目录一、数据采集与初步探索二、数据清洗的七种武器1. 缺失值处理策略2. 异常值检测与修正3. 数据

Python中bisect_left 函数实现高效插入与有序列表管理

《Python中bisect_left函数实现高效插入与有序列表管理》Python的bisect_left函数通过二分查找高效定位有序列表插入位置,与bisect_right的区别在于处理重复元素时... 目录一、bisect_left 基本介绍1.1 函数定义1.2 核心功能二、bisect_left 与

Python使用Tkinter打造一个完整的桌面应用

《Python使用Tkinter打造一个完整的桌面应用》在Python生态中,Tkinter就像一把瑞士军刀,它没有花哨的特效,却能快速搭建出实用的图形界面,作为Python自带的标准库,无需安装即可... 目录一、界面搭建:像搭积木一样组合控件二、菜单系统:给应用装上“控制中枢”三、事件驱动:让界面“活”

VSCode设置python SDK路径的实现步骤

《VSCode设置pythonSDK路径的实现步骤》本文主要介绍了VSCode设置pythonSDK路径的实现步骤,包括命令面板切换、settings.json配置、环境变量及虚拟环境处理,具有一定... 目录一、通过命令面板快速切换(推荐方法)二、通过 settings.json 配置(项目级/全局)三、

Python struct.unpack() 用法及常见错误详解

《Pythonstruct.unpack()用法及常见错误详解》struct.unpack()是Python中用于将二进制数据(字节序列)解析为Python数据类型的函数,通常与struct.pa... 目录一、函数语法二、格式字符串详解三、使用示例示例 1:解析整数和浮点数示例 2:解析字符串示例 3:解