模型部署之——ONNX模型转RKNN

2023-12-28 13:04
文章标签 部署 模型 rknn onnx

本文主要是介绍模型部署之——ONNX模型转RKNN,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

提示:这里可以添加学习目标

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档

文章目录

  • 一、加载Docker镜像
  • 二、转换脚本


一、加载Docker镜像

加载rknn官方提供的基于x86架构下模型转换的镜像文件,生成容器,以及执行镜像。

sudo docker load -i rknn-toolkit2:1.3.0-cp36
sudo docker run -v `pwd`/rknn_model_convert:/data -it rknn-toolkit2:1.3.0-cp36 /bin/bash  # 将文件路径rknn_model_convert绑定在docker容器的data文件夹下
docker exec -it de0f9e94348c /bin/bash         #de0f9e94348c 为加载镜像生成容器的id

二、转换脚本

from rknn.api import RKNN
import cv2def export_rknn_inference(img, model_path, Dataset, rknn_path):# Create RKNN object# 只在屏幕打印详细的日志信息 # rknn = RKNN(verbose=True)rknn = RKNN(verbose=True)# pre-process configprint('--> Config model')# mean_values 通道均值# std_values 方差, rknn是除以方差# quant_img_RGB2BGR 该参数是将量化图片格式又RGB转换为BGR,通常caffe训练的模型需要这个操作# quantized_algorithm 量化算法,normal 和 mmse, 不写该参数默认值为 normal, 其中:normal量化速度快, mmse量化速度快,精度稍微比normal保持的好# quantized_method 量化方法 channel, layer可选; layer:每层的 weight 只有一套量化参数; channel:每层的 weight 的每个通道都有一套量化参数。默认使用channel# target_platform 可以用来配置不同的芯片, 目前支持 rk3566、rk3568、rk3588、rv1103、rv1106, 该参数的值大小写不敏感。#rknn.config(mean_values=[[0, 0, 0]], std_values=[[255, 255, 255]], quantized_algorithm='normal', quantized_method='channel', target_platform='rk3566')rknn.config(mean_values=[[0, 0, 0]], std_values=[[255, 255, 255]], quantized_algorithm='normal', quantized_method='channel', target_platform='rk3588')print('done')# Load ONNX modelprint('--> Loading model')# 从当前目录加载 mobilenet_v2 的 onnx 模型,outputs 为 onnx输出层的名字(outputs可不写)#ret = rknn.load_onnx(model=model_path, outputs=['output1', 'output2', 'output3'])ret = rknn.load_onnx(model=model_path)if ret != 0:print('Load model failed!')exit(ret)print('done')# Build modelprint('--> Building model')# 构建 RKNN 模型# do_quantization 是否做量化(不做量化为float16)# dataset 为量化图片的路径# rknn_batch_size 为 batch_size 默认值为1(可以不写),建议 batch_size 小于 32ret = rknn.build(do_quantization=True, dataset=Dataset, rknn_batch_size=1)if ret != 0:print('Build model failed!')exit(ret)print('done')# Export RKNN modelprint('--> Export rknn model')ret = rknn.export_rknn(rknn_path)if ret != 0:print('Export rknn model failed!')exit(ret)print('done')# Init runtime environmentprint('--> Init runtime environment')ret = rknn.init_runtime(target=None, device_id=None, perf_debug=True)# ret = rknn.init_runtime(target='rk3566')if ret != 0:print('Init runtime environment failed!')exit(ret)print('done')# Inferenceprint('--> Running model')outputs = rknn.inference(inputs=[img])rknn.release()print('done')return outputsif __name__ == '__main__':print('This is main ....')# Set inputsimg_path = '20231116_paper_1042005.jpg'model_input_w = 640model_input_h = 480model_path = './yolox.onnx'Dataset = './test_export_1.txt'rknn_path = './yolox.rknn'origimg = cv2.imread(img_path)origimg = cv2.cvtColor(origimg, cv2.COLOR_BGR2RGB)img = cv2.resize(origimg, (model_input_w , model_input_h ))outputs = export_rknn_inference(img, model_path, Dataset, rknn_path)print("outputs:",outputs)

其中test_export_1为量化图像的路径,在rknn_model_convert文件夹下新建quant_image文件夹,将量化图像拷贝到里面并且使用
ls -l ./quant_image/*.jpg > test_export_1.txt 生成test_export_1.txt


这篇关于模型部署之——ONNX模型转RKNN的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/546038

相关文章

redis-sentinel基础概念及部署流程

《redis-sentinel基础概念及部署流程》RedisSentinel是Redis的高可用解决方案,通过监控主从节点、自动故障转移、通知机制及配置提供,实现集群故障恢复与服务持续可用,核心组件包... 目录一. 引言二. 核心功能三. 核心组件四. 故障转移流程五. 服务部署六. sentinel部署

Linux部署中的文件大小写问题的解决方案

《Linux部署中的文件大小写问题的解决方案》在本地开发环境(Windows/macOS)一切正常,但部署到Linux服务器后出现模块加载错误,核心原因是Linux文件系统严格区分大小写,所以本文给大... 目录问题背景解决方案配置要求问题背景在本地开发环境(Windows/MACOS)一切正常,但部署到

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do

MySQL 主从复制部署及验证(示例详解)

《MySQL主从复制部署及验证(示例详解)》本文介绍MySQL主从复制部署步骤及学校管理数据库创建脚本,包含表结构设计、示例数据插入和查询语句,用于验证主从同步功能,感兴趣的朋友一起看看吧... 目录mysql 主从复制部署指南部署步骤1.环境准备2. 主服务器配置3. 创建复制用户4. 获取主服务器状态5

golang程序打包成脚本部署到Linux系统方式

《golang程序打包成脚本部署到Linux系统方式》Golang程序通过本地编译(设置GOOS为linux生成无后缀二进制文件),上传至Linux服务器后赋权执行,使用nohup命令实现后台运行,完... 目录本地编译golang程序上传Golang二进制文件到linux服务器总结本地编译Golang程序

如何在Ubuntu 24.04上部署Zabbix 7.0对服务器进行监控

《如何在Ubuntu24.04上部署Zabbix7.0对服务器进行监控》在Ubuntu24.04上部署Zabbix7.0监控阿里云ECS服务器,需配置MariaDB数据库、开放10050/1005... 目录软硬件信息部署步骤步骤 1:安装并配置mariadb步骤 2:安装Zabbix 7.0 Server

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可

SpringBoot整合Sa-Token实现RBAC权限模型的过程解析

《SpringBoot整合Sa-Token实现RBAC权限模型的过程解析》:本文主要介绍SpringBoot整合Sa-Token实现RBAC权限模型的过程解析,本文给大家介绍的非常详细,对大家的学... 目录前言一、基础概念1.1 RBAC模型核心概念1.2 Sa-Token核心功能1.3 环境准备二、表结

Web技术与Nginx网站环境部署教程

《Web技术与Nginx网站环境部署教程》:本文主要介绍Web技术与Nginx网站环境部署教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、Web基础1.域名系统DNS2.Hosts文件3.DNS4.域名注册二.网页与html1.网页概述2.HTML概述3.

Nginx使用Keepalived部署web集群(高可用高性能负载均衡)实战案例

《Nginx使用Keepalived部署web集群(高可用高性能负载均衡)实战案例》本文介绍Nginx+Keepalived实现Web集群高可用负载均衡的部署与测试,涵盖架构设计、环境配置、健康检查、... 目录前言一、架构设计二、环境准备三、案例部署配置 前端 Keepalived配置 前端 Nginx