[最优化导论]C6 集合约束和无约束优化问题

2023-12-28 10:40

本文主要是介绍[最优化导论]C6 集合约束和无约束优化问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

集合约束和无约束优化问题

集合约束和无约束优化的基本形式为:

m i n i m i z e f ( x ) s u b j e c t t o x ∈ Ω \begin{aligned} minimize f(\mathbf{x}) \\ subject\ \ to\ \ \mathbf{x}\in\Omega\end{aligned} minimizef(x)subject  to  xΩ

目标就是在约束集 Ω \Omega Ω中找出最好的决策变量 x \mathbf{x} x,如果 Ω = R n \Omega=\mathbb{R}^n Ω=Rn,则问题就会转化为无约束优化问题。

用数学化的形式定义一下局部最小点就是:

如果存在一个 ε &gt; 0 \varepsilon&gt;0 ε>0,对于所有满足 ∣ ∣ x − x ∗ ∣ ∣ &lt; ε ||\mathbf{x}-\mathbf{x}^*||&lt;\varepsilon xx<ε的向量 x \mathbf{x} x,不等式 f ( x ) ≥ f ( x ∗ ) f(\mathbf{x}) \geq f(\mathbf{x}^*) f(x)f(x)都成立,则称 x ∗ \mathbf{x}^* x是函数 f f f在定义域中的一个局部最小点。

说的简单点就是如果在 x ∗ \mathbf{x}^* x一个邻域内的函数值都比在这个点大,则这个点就是局部最小点。

如果把上述的 ≥ \geq 换成 &gt; &gt; >,局部最小点也就成严格局部最小点。

优化问题的极小点可能位于约束集 Ω \Omega Ω的内部,也可能位于边界上。处于边界上的极小点需要满足一定条件之后才能成为真正的极小点。

举个例子:对于 f ( x ) = x 3 f(x)=x^3 f(x)=x3的函数,毫无疑问该函数是单调递增的,但一阶导数和二阶导数在原点的值为0,显然x=0并不是极小值点,由此可以看出成为局部最小点需要满足一些必要条件和充分条件,在多维空间中也是如此。

n元实值函数求导问题回顾:

导数矩阵(雅克比矩阵)为: D f ( x 0 ) = [ ∂ f ∂ x 1 ( x 0 ) ⋯ ∂ f ∂ x n ( x 0 ) ] Df(x_0)=[\frac{\partial f}{\partial x_1}(x_0) \cdots \frac{\partial f}{\partial x_n}(x_0)] Df(x0)=[x1f(x0)xnf(x0)]

如果函数f为一个向量,并且它的作用是将n维空间转化为m为空间,则对应的矩阵为:

D f ( x 0 ) = [ ∂ f ∂ x 1 ( x 0 ) ⋯ ∂ f ∂ x n ( x 0 ) ] = [ ∂ f 1 ∂ x 1 ( x 0 ) ⋯ ∂ f 1 ∂ x n ( x 0 ) ⋯ ⋯ ∂ f m ∂ x 1 ( x 0 ) ⋯ ∂ f m ∂ x n ( x 0 ) ] Df(x_0)=[\frac{\partial f}{\partial x_1}(x_0) \cdots \frac{\partial f}{\partial x_n}(x_0)]=\begin{bmatrix} \frac{\partial f_1}{\partial x_1}(x_0) &amp;\cdots &amp; \frac{\partial f_1}{\partial x_n}(x_0)\\ \cdots &amp; &amp; \cdots \\ \frac{\partial f_m}{\partial x_1}(x_0) &amp;\cdots &amp; \frac{\partial f_m}{\partial x_n}(x_0) \end{bmatrix} Df(x0)=[x1f(x0)xnf(x0)]=x1f1(x0)x1fm(x0)xnf1(x0)xnfm(x0)

如果二次可微,则对应的黑塞矩阵为:

F ( x ) ≜ D 2 f = [ ∂ 2 f ∂ x 1 2 ∂ 2 f ∂ x 2 ∂ x 1 ⋯ ∂ 2 f ∂ x n ∂ x 1 ∂ 2 f ∂ x 1 ∂ x 2 ∂ 2 f ∂ x 2 2 ⋯ ∂ 2 f ∂ x n ∂ x 2 ⋮ ⋮ ⋱ ⋮ ∂ 2 f ∂ x 1 ∂ x n ∂ 2 f ∂ x 2 ∂ x n ⋯ ∂ 2 f ∂ x n 2 ] \mathbf{F(x)}\triangleq D^2f=\begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} &amp;\frac{\partial^2 f}{\partial x_2\partial x_1} &amp; \cdots &amp; \frac{\partial^2 f}{\partial x_n\partial x_1}\\ \frac{\partial^2 f}{\partial x_1\partial x_2} &amp; \frac{\partial^2 f}{\partial x_2 ^2}&amp; \cdots &amp; \frac{\partial^2 f}{\partial x_n\partial x_2}\\ \vdots &amp;\vdots &amp; \ddots &amp;\vdots\\ \frac{\partial^2 f}{\partial x_1\partial x_n} &amp; \frac{\partial^2 f}{\partial x_2\partial x_n}&amp; \cdots &amp; \frac{\partial^2 f}{\partial x_n ^2} \end{bmatrix} F(x)D2f=x122fx1x22fx1xn2fx2x12fx222fx2xn2fxnx12fxnx22fxn22f

1.一阶必要条件

首先来看这样一种情况,
在这里插入图片描述
在上图中,如果x向量往d2方向走一小步,就会走出约束集合;而往d1方向走一小步还在约束集内,所以d1为可行方向。对应的,d2为不可行方向。

设在约束集内的可行方向为 d \mathbf{d} d,函数对应的梯度为 ▽ f ( x ) \bigtriangledown f(\mathbf{x}) f(x)为函数梯度,则沿着可行方向的方向倒数为梯度与单位可行方向向量的内积。

对应的一阶必要条件为:

f f f在约束集 Ω \Omega Ω上一阶连续可微,如果 x ∗ \mathbf{x}^* x是函数 f f f在约束集 Ω \Omega Ω上局部极小点,则需要满足处于 x ∗ \mathbf{x}^* x的任意可行方向上,都有:

d T ▽ f ( x ) ≥ 0 \mathbf{d}^T\bigtriangledown f(\mathbf{x})\geq 0 dTf(x)0

成立。

例如在下图中,x1并不能满足一阶必要条件,而x2可以。所以x1不是局部极小点。
在这里插入图片描述
推论

如果 x ∗ \mathbf{x}^* x是位于约束集内部的点,则需要满足的一阶必要条件为:

▽ f ( x ∗ ) = 0 \bigtriangledown f(\mathbf{x}^*)=0 f(x)=0

即需要满足梯度为0向量,相当于在一元函数中函数的导数为0是必要条件。

2. 二阶必要条件

一阶必要条件并不能确保某个点为局部最小点,局部最小点还需要满足的二阶必要条件为:

Ω \Omega Ω上二阶连续可微,满足一阶必要条件的情况下,还需满足:

d T F ( x ∗ ) d ≥ 0 \mathbf{d}^T\mathbf{F(x^*)}\mathbf{d}\geq 0 dTF(x)d0

其中 F \mathbf{F} F为函数对应的黑塞矩阵。

同样如果 x ∗ \mathbf{x}^* x在约束集内部时,需要满足的二阶必要条件为:

▽ f ( x ∗ ) = 0 \bigtriangledown f(\mathbf{x}^*)=0 f(x)=0

d T F ( x ∗ ) d ≥ 0 \mathbf{d}^T\mathbf{F(x^*)}\mathbf{d}\geq 0 dTF(x)d0
在这里插入图片描述
同时满足两个必要条件也不一定为局部最小点,如作图;右图为满足一阶必要条件,而不满足二阶必要条件的例子。

3. 局部最小点的充分条件

如果:

  1. ▽ f ( x ∗ ) = 0 \bigtriangledown f(\mathbf{x}^*)=0 f(x)=0
  2. F ( x ∗ ) &gt; 0 \mathbf{F(x^*)}&gt; 0 F(x)>0

x ∗ \mathbf{x}^* x为函数 f f f的严格局部最小点。

相当于在一元函数中,一阶导数为0且二阶导数大于0,则该点为极小值。

当然面对一个高度非线性的问题,如果利用二阶必要条件或充分条件求解,需要很多次进行二阶求导,具有很大的工作量,所以通常采用极小值的迭代求解方法,下一章将会介绍。

这篇关于[最优化导论]C6 集合约束和无约束优化问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/545675

相关文章

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

IDEA和GIT关于文件中LF和CRLF问题及解决

《IDEA和GIT关于文件中LF和CRLF问题及解决》文章总结:因IDEA默认使用CRLF换行符导致Shell脚本在Linux运行报错,需在编辑器和Git中统一为LF,通过调整Git的core.aut... 目录问题描述问题思考解决过程总结问题描述项目软件安装shell脚本上git仓库管理,但拉取后,上l

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

idea npm install很慢问题及解决(nodejs)

《ideanpminstall很慢问题及解决(nodejs)》npm安装速度慢可通过配置国内镜像源(如淘宝)、清理缓存及切换工具解决,建议设置全局镜像(npmconfigsetregistryht... 目录idea npm install很慢(nodejs)配置国内镜像源清理缓存总结idea npm in

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

Java集合之Iterator迭代器实现代码解析

《Java集合之Iterator迭代器实现代码解析》迭代器Iterator是Java集合框架中的一个核心接口,位于java.util包下,它定义了一种标准的元素访问机制,为各种集合类型提供了一种统一的... 目录一、什么是Iterator二、Iterator的核心方法三、基本使用示例四、Iterator的工

idea突然报错Malformed \uxxxx encoding问题及解决

《idea突然报错Malformeduxxxxencoding问题及解决》Maven项目在切换Git分支时报错,提示project元素为描述符根元素,解决方法:删除Maven仓库中的resolv... 目www.chinasem.cn录问题解决方式总结问题idea 上的 maven China编程项目突然报错,是

Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题

《Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题》在爬虫工程里,“HTTPS”是绕不开的话题,HTTPS为传输加密提供保护,同时也给爬虫带来证书校验、... 目录一、核心问题与优先级检查(先问三件事)二、基础示例:requests 与证书处理三、高并发选型:

前端导出Excel文件出现乱码或文件损坏问题的解决办法

《前端导出Excel文件出现乱码或文件损坏问题的解决办法》在现代网页应用程序中,前端有时需要与后端进行数据交互,包括下载文件,:本文主要介绍前端导出Excel文件出现乱码或文件损坏问题的解决办法,... 目录1. 检查后端返回的数据格式2. 前端正确处理二进制数据方案 1:直接下载(推荐)方案 2:手动构造

Java JUC并发集合详解之线程安全容器完全攻略

《JavaJUC并发集合详解之线程安全容器完全攻略》Java通过java.util.concurrent(JUC)包提供了一整套线程安全的并发容器,它们不仅是简单的同步包装,更是基于精妙并发算法构建... 目录一、为什么需要JUC并发集合?二、核心并发集合分类与详解三、选型指南:如何选择合适的并发容器?在多