无人机编队路径规划算法的Matlab实现

2023-12-28 09:40

本文主要是介绍无人机编队路径规划算法的Matlab实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

室内多智能体协同控制是指在密闭空间内的各个无人机及无人车在运动时能够相互之间保持一定的相对距离,并在速度及位置上按照预设路线或命令进行运动的过程。本平台的多智能体协同定位采用光学运动捕捉技术,并通过WiFi网络实现多机、多车间的通信,用户能够将开发的无人机及无人车编队仿真控制算法直接生成代码下载到无人机及无人车中,在室内环境下进行多机、多车分布式编队算法的验证。

无人机协同控制
2、特征优势

(1)室内定位系统

采用室内光学运动捕捉技术,定位范围5m×5m(可定制扩展),支持毫米级定位,能够最多同时捕捉12架左右的无人机或无人车;

(2)多智能体

本平台系统支持4架无人机及2台无人车进行编队实验(被控对象数目可根据实验室具体情况扩展);

(3)基础开发平台

可在MATLAB/Simulink软件平台上进行的控制算法研究,支持自动生成代码,通过无线WiFi下载到无人机飞控板及无人车控制板;

(4)扩展开发语言

系统支持C、C++、python编程,适合有一定代码开发能力的学生,进一步锤炼代码编程能力;

(5)ROS学习开发
提供了ROS的支持包,可实现Simulink控制模型到ROS系统代码的自动生成,降低了ROS系统控制模型的开发难度,适合大众化本科教学实验。

(6)应用方向

可用于无人工具的动态建模和控制研究、运动规划、避障控制、多信息融合、编队控制、多智能体协调控制、无人工具自主控制等。

无人机编队路径规划是一个复杂的问题,需要根
据具体的场景和需求选择不同的算法。
下面提供一种比较常见的算法,该算法包括以下几个步骤:
计算每个无人机和最近路径点之间的距离和偏角。
计算目标加速度和角速度,以达到在最短距离和最小角度误差之间平衡。
根据目标速度和加速度计算无人机的x轴速度vx、y轴速度vy和航向角heading,以达到目标位姿。
重复上述步骤,直到所有无人机达到其目标位姿。

在这里插入图片描述

#include <stdio.h>
#include <math.h>#define MAX 100struct drone {double x; //无人机的x坐标double y; //无人机的y坐标double vx; //无人机的x轴速度double vy; //无人机的y轴速度double ax; //无人机的x轴加速度double ay; //无人机的y轴加速度double heading; //无人机的航向角double speed; //无人机的速度double distance; //无人机和目标点的距离double angle; //无人机和目标点的偏角
};struct path {double x; //路径点x坐标double y; //路径点y坐标
};void path_planning(struct drone drones[], int num_drones, struct path paths[], int num_path) {for (int i = 0; i < num_drones; i++) {//计算每个无人机和最近路径点之间的距离和偏角int nearest_index = -1; //最近的路径点索引double nearest_distance = INFINITY; //到最近路径点的距离for (int j = 0; j < num_path; j++) {double distance = sqrt(pow(drones[i].x - paths[j].x, 2) + pow(drones[i].y - paths[j].y, 2));double angle = atan2(paths[j].y - drones[i].y, paths[j].x - drones[i].x);angle -= drones[i].heading;if (distance < nearest_distance) {nearest_index = j;nearest_distance = distance;drones[i].distance = distance;drones[i].angle = angle;}}//计算目标速度和角速度double k1 = 1.0, k2 = 1.0; //调节参数drones[i].ax = k1 * drones[i].distance * cos(drones[i].angle);drones[i].ay = k1 * drones[i].distance * sin(drones[i].angle);double heading_error = atan2(drones[i].ay, drones[i].ax);double w = k2 * heading_error;//计算目标速度double max_speed = 10.0; //最大速度drones[i].speed = fmin(max_speed, k1 * drones[i].distance);//计算目标速度和角速度drones[i].vx = drones[i].speed * cos(drones[i].heading) + drones[i].ax;drones[i].vy = drones[i].speed * sin(drones[i].heading) + drones[i].ay;drones[i].heading += w; //更新无人机的航向角}
}int main() {struct drone drones[MAX] = {{1.0, 2.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0},{3.0, 4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0},{2.0, 3.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}};struct path paths[MAX] = {{5.0, 1.0},{4.0, 4.0},{1.0, 6.0}};path_planning(drones, 3, paths, 3);for (int i = 0; i < 3; i++) {printf("Drone %d: x=%lf, y=%lf, vx=%lf, vy=%lf\n", i + 1, drones[i].x, drones[i].y, drones[i].vx, drones[i].vy);}return 0;
}

上面的代码演示了如何将无人机从当前位置移动到一组给定路径点。可以看到,在此算法中,每个无人机从列表中的路径点中查找最近的一个,并在最近路径点处更新其目标x、y坐标和航向角。此外,还使用调节参数和当前航向角计算目标加速度、目标角速度和目标速度。
虽然这个简单的例子是一个可行的路径规划算法,但在实际应用中,可能需要更加复杂和高级的算法来适应现实世界中各种各样复杂多变的场景和需求。

对于更加复杂的场合,还可以使用一些强化学习算法,例如深度强化学习(DeepRL)算法,以实现更为智能化和自适应的无人机编队路径规划。这些算法使用神经网络模型来学习无人机的行为和环境之间的关系,以优化位置、速度、角速度等策略,以实现最优的路径规划方案。
在使用深度强化学习算法时,通常需要具备以下步骤:
1.定义智能体的状态,动作和奖励函数。 2.使用模拟器或真实场景下进行一系列训练,通过调整神经网络的权重,使其优化损失函数。 3.在模拟器或真实场景下进行一系列测试,以评估性能指标并进行调整和改进。
深度强化学习算法为无人机编队路径规划提供了一种更加灵活和具有自适应性的方法。它可以根据实际场景和应用需求来制定相应的奖励函数和学习策略,以实现更加理想的编队路径规划方案。

这篇关于无人机编队路径规划算法的Matlab实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/545559

相关文章

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

PostgreSQL中MVCC 机制的实现

《PostgreSQL中MVCC机制的实现》本文主要介绍了PostgreSQL中MVCC机制的实现,通过多版本数据存储、快照隔离和事务ID管理实现高并发读写,具有一定的参考价值,感兴趣的可以了解一下... 目录一 MVCC 基本原理python1.1 MVCC 核心概念1.2 与传统锁机制对比二 Postg

SpringBoot整合Flowable实现工作流的详细流程

《SpringBoot整合Flowable实现工作流的详细流程》Flowable是一个使用Java编写的轻量级业务流程引擎,Flowable流程引擎可用于部署BPMN2.0流程定义,创建这些流程定义的... 目录1、流程引擎介绍2、创建项目3、画流程图4、开发接口4.1 Java 类梳理4.2 查看流程图4

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志

《SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志》在SpringBoot项目中,使用logback-spring.xml配置屏蔽特定路径的日志有两种常用方式,文中的... 目录方案一:基础配置(直接关闭目标路径日志)方案二:结合 Spring Profile 按环境屏蔽关

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

基于Python实现一个Windows Tree命令工具

《基于Python实现一个WindowsTree命令工具》今天想要在Windows平台的CMD命令终端窗口中使用像Linux下的tree命令,打印一下目录结构层级树,然而还真有tree命令,但是发现... 目录引言实现代码使用说明可用选项示例用法功能特点添加到环境变量方法一:创建批处理文件并添加到PATH1

Java使用HttpClient实现图片下载与本地保存功能

《Java使用HttpClient实现图片下载与本地保存功能》在当今数字化时代,网络资源的获取与处理已成为软件开发中的常见需求,其中,图片作为网络上最常见的资源之一,其下载与保存功能在许多应用场景中都... 目录引言一、Apache HttpClient简介二、技术栈与环境准备三、实现图片下载与保存功能1.