xgboost兼具线性规模求解器和树学习算法,GBDT 方法只利用了一阶的导数信息,Xgboost 则是对损失函 数做了二阶的泰勒展开,并在目标函数之外加入了正 则项,整体求最优解,用于权衡目标函数的

本文主要是介绍xgboost兼具线性规模求解器和树学习算法,GBDT 方法只利用了一阶的导数信息,Xgboost 则是对损失函 数做了二阶的泰勒展开,并在目标函数之外加入了正 则项,整体求最优解,用于权衡目标函数的,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Xgboost 是华盛顿大学陈天奇于 2016 年开发的 Boosting 库,兼具线性规模求解器树学习算法[14]。 它是 GBDT 算法上的改进,更加高效。传统的 GBDT 方法只利用了一阶的导数信息,Xgboost 则是对损失函 数做了二阶的泰勒展开,并在目标函数之外加入了正 则项,整体求最优解,用于权衡目标函数的下降和模型 的复杂程度,避免过拟合,提高模型的求解效率,其步 骤如下: ( 1) 给定数据集 D = { ( xi,yi ) : i = 1,2,…,n,xi∈ Rp ,yi∈R} ,其中 n 为样本个数,每个样本有 P 个特 征。假设我们给定 k( k = 1,2,…,K) 个回归树,xi 表示 第 i 个数据点的特征向量,fk 是一个回归树,F 是回归 树的集合空间,模型可表示为:

GBDT是先产生一个弱学习器 (也叫基学习器),训练后得到样本的 "残差" (严格来说是负梯度),然后再产生一个弱学习器并基于上一轮学习器得到的 "残差" 进行训练,不断迭代,最后加权结合所有弱学习器得到强学习器。 

这个gblinear是什么意思?

因为对于线性回归来说,stack是没有意义的,这里的gblinear的意思实际上就是用sgd的迭代方法来训练一个LASSO线性模型。此时基于gblinear的xgboost就没有真正的‘boost’,只是一个用sgd求解的普通线性模型。

2.XGBoost与GBDT有什么不同

  • 基分类器:XGBoost的基分类器不仅支持CART决策树,还支持线性分类器,此时XGBoost相当于带L1和L2正则化项的Logistic回归(分类问题)或者线性回归(回归问题)。
  • 导数信息:XGBoost对损失函数做了二阶泰勒展开,GBDT只用了一阶导数信息,并且XGBoost还支持自定义损失函数,只要损失函数一阶、二阶可导。
  • 正则项:XGBoost的目标函数加了正则项, 相当于预剪枝,使得学习出来的模型更加不容易过拟合。
  • 列抽样:XGBoost支持列采样,与随机森林类似,用于防止过拟合
  • 缺失值处理对树中的每个非叶子结点,XGBoost可以自动学习出它的默认分裂方向。如果某个样本该特征值缺失,会将其划入默认分支。
  • 并行化:注意不是tree维度的并行,而是特征维度的并行。XGBoost预先将每个特征按特征值排好序,存储为块结构,分裂结点时可以采用多线程并行查找每个特征的最佳分割点,极大提升训练速度。

3.XGBoost为什么使用泰勒二阶展开

  • 精准性:相对于GBDT的一阶泰勒展开,XGBoost采用二阶泰勒展开,可以更为精准的逼近真实的损失函数
  • 可扩展性:损失函数支持自定义,只需要新的损失函数二阶可导

4.XGBoost为什么可以并行训练

  • XGBoost的并行,并不是说每棵树可以并行训练,XGB本质上仍然采用boosting思想,每棵树训练前需要等前面的树训练完成才能开始训练。
  • XGBoost的并行,指的是特征维度的并行:在训练之前,每个特征按特征值对样本进行预排序,并存储为Block结构,在后面查找特征分割点时可以重复使用,而且特征已经被存储为一个个block结构,那么在寻找每个特征的最佳分割点时,可以利用多线程对每个block并行计算。

5.XGBoost为什么快

  • 分块并行:训练前每个特征按特征值进行排序并存储为Block结构,后面查找特征分割点时重复使用,并且支持并行查找每个特征的分割点
  • 候选分位点每个特征采用常数个分位点作为候选分割点
  • CPU cache 命中优化:使用缓存预取的方法,对每个线程分配一个连续的buffer,读取每个block中样本的梯度信息并存入连续的Buffer中
  • Block 处理优化Block预先放入内存Block按列进行解压缩;将Block划分到不同硬盘来提高吞吐

6.XGBoost防止过拟合的方法

XGBoost在设计时,为了防止过拟合做了很多优化,具体如下:

  • 目标函数添加正则项叶子节点个数+叶子节点权重的L2正则化
  • 列抽样训练的时候只用一部分特征(不考虑剩余的block块即可)
  • 子采样:每轮计算可以不使用全部样本,使算法更加保守
  • shrinkage: 可以叫学习率或步长,为了给后面的训练留出更多的学习空间

7.XGBoost如何处理缺失值

XGBoost模型的一个优点就是允许特征存在缺失值。对缺失值的处理方式如下:

  • 在特征k上寻找最佳 split point 时,不会对该列特征 missing 的样本进行遍历,而只对该列特征值为 non-missing 的样本上对应的特征值进行遍历,通过这个技巧来减少了为稀疏离散特征找 split point 的时间开销
  • 在逻辑实现上,为了保证完备性,会将该特征值missing的样本分别分配到左叶子结点和右叶子结点,两种情形都计算一遍后,选择分裂后增益最大的那个方向(左分支或是右分支),作为预测时特征值缺失样本的默认分支方向
  • 如果在训练中没有缺失值而在预测中出现缺失,那么会自动将缺失值的划分方向放到右子结点。

也可以参考xgb的作者陈天骐在这个问题里二楼的回应。

GBDT,它是一种基于boosting增强策略加法模型,训练的时候采用前向分布算法进行贪婪的学习,每次迭代都学习一棵CART树来拟合之前 t-1 棵树的预测结果训练样本真实值的残差

xgboost算法比较复杂,针对传统GBDT算法做了很多细节改进,包括

损失函数

正则化、

切分点查找算法优化

稀疏感知算法

并行化算法设计等等。本文主要介绍xgboost基本原理以及与传统gbdt算法对比总结,后续会基于python版本做了一些实战调参试验。想详细学习xgboost算法原理建议通读作者原始论文与slide讲解。

1.传统GBDT以CART作为基分类器,xgboost还支持线性分类器,这个时候xgboost相当于带L1和L2正则化项的逻辑斯蒂回归(分类问题)或者线性回归(回归问题)。 —可以通过booster [default=gbtree]设置参数:gbtree: tree-based models/gblinear: linear models

2.传统GBDT在优化时只用到一阶导数信息,xgboost则对代价函数进行了二阶泰勒展开,同时用到了一阶和二阶导数。顺便提一下,xgboost工具支持自定义代价函数,只要函数可一阶和二阶求导。 —对损失函数做了改进(泰勒展开,一阶信息g和二阶信息h,上一章节有做介绍)

3.xgboost在代价函数里加入了正则项,用于控制模型的复杂度。正则项里包含了树的叶子节点个数、每个叶子节点上输出的score的L2模的平方和。从Bias-variance tradeoff角度来讲,正则项降低了模型variance,使学习出来的模型更加简单,防止过拟合,这也是xgboost优于传统GBDT的一个特性
—正则化包括了两个部分,都是为了防止过拟合,剪枝是都有的叶子结点输出L2平滑是新增的

4.shrinkage and column subsampling —还是为了防止过拟合,论文2.3节有介绍,这里答主已概括的非常到位

(1)shrinkage缩减类似于学习速率,在每一步tree boosting之后增加了一个参数n(权重),通过这种方式来减小每棵树的影响力,给后面的树提供空间去优化模型。

(2)column subsampling列(特征)抽样,说是从随机森林那边学习来的,防止过拟合的效果比传统的行抽样还好(行抽样功能也有),并且有利于后面提到的并行化处理算法
 

这篇关于xgboost兼具线性规模求解器和树学习算法,GBDT 方法只利用了一阶的导数信息,Xgboost 则是对损失函 数做了二阶的泰勒展开,并在目标函数之外加入了正 则项,整体求最优解,用于权衡目标函数的的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/545174

相关文章

Python的time模块一些常用功能(各种与时间相关的函数)

《Python的time模块一些常用功能(各种与时间相关的函数)》Python的time模块提供了各种与时间相关的函数,包括获取当前时间、处理时间间隔、执行时间测量等,:本文主要介绍Python的... 目录1. 获取当前时间2. 时间格式化3. 延时执行4. 时间戳运算5. 计算代码执行时间6. 转换为指

Python正则表达式语法及re模块中的常用函数详解

《Python正则表达式语法及re模块中的常用函数详解》这篇文章主要给大家介绍了关于Python正则表达式语法及re模块中常用函数的相关资料,正则表达式是一种强大的字符串处理工具,可以用于匹配、切分、... 目录概念、作用和步骤语法re模块中的常用函数总结 概念、作用和步骤概念: 本身也是一个字符串,其中

shell编程之函数与数组的使用详解

《shell编程之函数与数组的使用详解》:本文主要介绍shell编程之函数与数组的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录shell函数函数的用法俩个数求和系统资源监控并报警函数函数变量的作用范围函数的参数递归函数shell数组获取数组的长度读取某下的

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

MySQL高级查询之JOIN、子查询、窗口函数实际案例

《MySQL高级查询之JOIN、子查询、窗口函数实际案例》:本文主要介绍MySQL高级查询之JOIN、子查询、窗口函数实际案例的相关资料,JOIN用于多表关联查询,子查询用于数据筛选和过滤,窗口函... 目录前言1. JOIN(连接查询)1.1 内连接(INNER JOIN)1.2 左连接(LEFT JOI

MySQL中FIND_IN_SET函数与INSTR函数用法解析

《MySQL中FIND_IN_SET函数与INSTR函数用法解析》:本文主要介绍MySQL中FIND_IN_SET函数与INSTR函数用法解析,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友一... 目录一、功能定义与语法1、FIND_IN_SET函数2、INSTR函数二、本质区别对比三、实际场景案例分

C++ Sort函数使用场景分析

《C++Sort函数使用场景分析》sort函数是algorithm库下的一个函数,sort函数是不稳定的,即大小相同的元素在排序后相对顺序可能发生改变,如果某些场景需要保持相同元素间的相对顺序,可使... 目录C++ Sort函数详解一、sort函数调用的两种方式二、sort函数使用场景三、sort函数排序

C语言函数递归实际应用举例详解

《C语言函数递归实际应用举例详解》程序调用自身的编程技巧称为递归,递归做为一种算法在程序设计语言中广泛应用,:本文主要介绍C语言函数递归实际应用举例的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录前言一、递归的概念与思想二、递归的限制条件 三、递归的实际应用举例(一)求 n 的阶乘(二)顺序打印

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

C/C++错误信息处理的常见方法及函数

《C/C++错误信息处理的常见方法及函数》C/C++是两种广泛使用的编程语言,特别是在系统编程、嵌入式开发以及高性能计算领域,:本文主要介绍C/C++错误信息处理的常见方法及函数,文中通过代码介绍... 目录前言1. errno 和 perror()示例:2. strerror()示例:3. perror(