DataWhale-(scikit-learn教程)-Task06(主成分分析)-202112

2023-12-27 21:48

本文主要是介绍DataWhale-(scikit-learn教程)-Task06(主成分分析)-202112,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、 PCA主成分分析算法介绍

在这里插入图片描述
在这里插入图片描述

二、算法实现

import sys
from pathlib import Path
curr_path = str(Path().absolute()) # 当前文件所在绝对路径
parent_path = str(Path().absolute().parent) # 父路径
sys.path.append(parent_path) # 添加路径到系统路径from Mnist.load_data import load_local_mnistfrom sklearn.decomposition import PCA
import numpy as np
import matplotlib.pyplot as plt(X_train, y_train), (X_test, y_test) = load_local_mnist(normalize = False,one_hot = False)
m , p = X_train.shape # m:训练集数量,p:特征维度数print(f"原本特征维度数:{p}") # 特征维度数为784# n_components是>=1的整数时,表示期望PCA降维后的特征维度数
# n_components是[0,1]的数时,表示主成分的方差和所占的最小比例阈值,PCA类自己去根据样本特征方差来决定降维到的维度
model = PCA(n_components=0.95) 
lower_dimensional_data = model.fit_transform(X_train)print(f"降维后的特征维度数:{model.n_components_}")
approximation = model.inverse_transform(lower_dimensional_data) # 降维后的数据还原
plt.figure(figsize=(8,4));# 原始图片
plt.subplot(1, 2, 1);
plt.imshow(X_train[1].reshape(28,28),cmap = plt.cm.gray, interpolation='nearest',clim=(0, 255));
plt.xlabel(f'{X_train.shape[1]} components', fontsize = 14)
plt.title('Original Image', fontsize = 20)
# 降维后的图片
plt.subplot(1, 2, 2);
plt.imshow(approximation[1].reshape(28, 28),cmap = plt.cm.gray, interpolation='nearest',clim=(0, 255));
plt.xlabel(f'{model.n_components_} components', fontsize = 14)
plt.title('95% of Explained Variance', fontsize = 20)
plt.show()

在这里插入图片描述

model = PCA() # 这里需要分析所有主成分,所以不降维
model.fit(X_train)
tot = sum(model.explained_variance_) 
var_exp = [(i/tot)*100 for i in sorted(model.explained_variance_, reverse=True)] 
cum_var_exp = np.cumsum(var_exp)
plt.figure(figsize=(10, 5))
plt.step(range(1, p+1), cum_var_exp, where='mid',label='cumulative explained variance') # p:特征维度数
plt.title('Cumulative Explained Variance as a Function of the Number of Components')
plt.ylabel('Cumulative Explained variance')
plt.xlabel('Principal components')
plt.axhline(y = 95, color='k', linestyle='--', label = '95% Explained Variance')
plt.axhline(y = 90, color='c', linestyle='--', label = '90% Explained Variance')
plt.axhline(y = 85, color='r', linestyle='--', label = '85% Explained Variance')
plt.legend(loc='best')
plt.show()

在这里插入图片描述

def explained_variance(percentage, images): ''':param: percentage [float]: 降维的百分比:return: approx_original: 降维后还原的图片:return: model.n_components_: 降维后的主成分个数'''   model = PCA(percentage)model.fit(images)components = model.transform(images)approx_original = model.inverse_transform(components)return approx_original,model.n_components_
plt.figure(figsize=(8,10));
percentages = [1,0.99,0.95,0.90]
for i in range(1,5):plt.subplot(2,2,i)im, n_components = explained_variance(percentages[i-1], X_train)im = im[5].reshape(28, 28) # 重建成图片plt.imshow(im,cmap = plt.cm.gray, interpolation='nearest',clim=(0, 255))plt.xlabel(f'{n_components} Components', fontsize = 12)if i==1:plt.title('Original Image', fontsize = 14)else:plt.title(f'{percentages[i-1]*100}% of Explained Variance', fontsize = 14)
plt.show()

在这里插入图片描述

这篇关于DataWhale-(scikit-learn教程)-Task06(主成分分析)-202112的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/544375

相关文章

关于MyISAM和InnoDB对比分析

《关于MyISAM和InnoDB对比分析》:本文主要介绍关于MyISAM和InnoDB对比分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录开篇:从交通规则看存储引擎选择理解存储引擎的基本概念技术原理对比1. 事务支持:ACID的守护者2. 锁机制:并发控制的艺

Nexus安装和启动的实现教程

《Nexus安装和启动的实现教程》:本文主要介绍Nexus安装和启动的实现教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、Nexus下载二、Nexus安装和启动三、关闭Nexus总结一、Nexus下载官方下载链接:DownloadWindows系统根

MyBatis Plus 中 update_time 字段自动填充失效的原因分析及解决方案(最新整理)

《MyBatisPlus中update_time字段自动填充失效的原因分析及解决方案(最新整理)》在使用MyBatisPlus时,通常我们会在数据库表中设置create_time和update... 目录前言一、问题现象二、原因分析三、总结:常见原因与解决方法对照表四、推荐写法前言在使用 MyBATis

Python主动抛出异常的各种用法和场景分析

《Python主动抛出异常的各种用法和场景分析》在Python中,我们不仅可以捕获和处理异常,还可以主动抛出异常,也就是以类的方式自定义错误的类型和提示信息,这在编程中非常有用,下面我将详细解释主动抛... 目录一、为什么要主动抛出异常?二、基本语法:raise关键字基本示例三、raise的多种用法1. 抛

github打不开的问题分析及解决

《github打不开的问题分析及解决》:本文主要介绍github打不开的问题分析及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、找到github.com域名解析的ip地址二、找到github.global.ssl.fastly.net网址解析的ip地址三

CnPlugin是PL/SQL Developer工具插件使用教程

《CnPlugin是PL/SQLDeveloper工具插件使用教程》:本文主要介绍CnPlugin是PL/SQLDeveloper工具插件使用教程,具有很好的参考价值,希望对大家有所帮助,如有错... 目录PL/SQL Developer工具插件使用安装拷贝文件配置总结PL/SQL Developer工具插

Mysql的主从同步/复制的原理分析

《Mysql的主从同步/复制的原理分析》:本文主要介绍Mysql的主从同步/复制的原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录为什么要主从同步?mysql主从同步架构有哪些?Mysql主从复制的原理/整体流程级联复制架构为什么好?Mysql主从复制注意

Java中的登录技术保姆级详细教程

《Java中的登录技术保姆级详细教程》:本文主要介绍Java中登录技术保姆级详细教程的相关资料,在Java中我们可以使用各种技术和框架来实现这些功能,文中通过代码介绍的非常详细,需要的朋友可以参考... 目录1.登录思路2.登录标记1.会话技术2.会话跟踪1.Cookie技术2.Session技术3.令牌技

java -jar命令运行 jar包时运行外部依赖jar包的场景分析

《java-jar命令运行jar包时运行外部依赖jar包的场景分析》:本文主要介绍java-jar命令运行jar包时运行外部依赖jar包的场景分析,本文给大家介绍的非常详细,对大家的学习或工作... 目录Java -jar命令运行 jar包时如何运行外部依赖jar包场景:解决:方法一、启动参数添加: -Xb

Python使用Code2flow将代码转化为流程图的操作教程

《Python使用Code2flow将代码转化为流程图的操作教程》Code2flow是一款开源工具,能够将代码自动转换为流程图,该工具对于代码审查、调试和理解大型代码库非常有用,在这篇博客中,我们将深... 目录引言1nVflRA、为什么选择 Code2flow?2、安装 Code2flow3、基本功能演示