DataWhale-(scikit-learn教程)-Task06(主成分分析)-202112

2023-12-27 21:48

本文主要是介绍DataWhale-(scikit-learn教程)-Task06(主成分分析)-202112,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、 PCA主成分分析算法介绍

在这里插入图片描述
在这里插入图片描述

二、算法实现

import sys
from pathlib import Path
curr_path = str(Path().absolute()) # 当前文件所在绝对路径
parent_path = str(Path().absolute().parent) # 父路径
sys.path.append(parent_path) # 添加路径到系统路径from Mnist.load_data import load_local_mnistfrom sklearn.decomposition import PCA
import numpy as np
import matplotlib.pyplot as plt(X_train, y_train), (X_test, y_test) = load_local_mnist(normalize = False,one_hot = False)
m , p = X_train.shape # m:训练集数量,p:特征维度数print(f"原本特征维度数:{p}") # 特征维度数为784# n_components是>=1的整数时,表示期望PCA降维后的特征维度数
# n_components是[0,1]的数时,表示主成分的方差和所占的最小比例阈值,PCA类自己去根据样本特征方差来决定降维到的维度
model = PCA(n_components=0.95) 
lower_dimensional_data = model.fit_transform(X_train)print(f"降维后的特征维度数:{model.n_components_}")
approximation = model.inverse_transform(lower_dimensional_data) # 降维后的数据还原
plt.figure(figsize=(8,4));# 原始图片
plt.subplot(1, 2, 1);
plt.imshow(X_train[1].reshape(28,28),cmap = plt.cm.gray, interpolation='nearest',clim=(0, 255));
plt.xlabel(f'{X_train.shape[1]} components', fontsize = 14)
plt.title('Original Image', fontsize = 20)
# 降维后的图片
plt.subplot(1, 2, 2);
plt.imshow(approximation[1].reshape(28, 28),cmap = plt.cm.gray, interpolation='nearest',clim=(0, 255));
plt.xlabel(f'{model.n_components_} components', fontsize = 14)
plt.title('95% of Explained Variance', fontsize = 20)
plt.show()

在这里插入图片描述

model = PCA() # 这里需要分析所有主成分,所以不降维
model.fit(X_train)
tot = sum(model.explained_variance_) 
var_exp = [(i/tot)*100 for i in sorted(model.explained_variance_, reverse=True)] 
cum_var_exp = np.cumsum(var_exp)
plt.figure(figsize=(10, 5))
plt.step(range(1, p+1), cum_var_exp, where='mid',label='cumulative explained variance') # p:特征维度数
plt.title('Cumulative Explained Variance as a Function of the Number of Components')
plt.ylabel('Cumulative Explained variance')
plt.xlabel('Principal components')
plt.axhline(y = 95, color='k', linestyle='--', label = '95% Explained Variance')
plt.axhline(y = 90, color='c', linestyle='--', label = '90% Explained Variance')
plt.axhline(y = 85, color='r', linestyle='--', label = '85% Explained Variance')
plt.legend(loc='best')
plt.show()

在这里插入图片描述

def explained_variance(percentage, images): ''':param: percentage [float]: 降维的百分比:return: approx_original: 降维后还原的图片:return: model.n_components_: 降维后的主成分个数'''   model = PCA(percentage)model.fit(images)components = model.transform(images)approx_original = model.inverse_transform(components)return approx_original,model.n_components_
plt.figure(figsize=(8,10));
percentages = [1,0.99,0.95,0.90]
for i in range(1,5):plt.subplot(2,2,i)im, n_components = explained_variance(percentages[i-1], X_train)im = im[5].reshape(28, 28) # 重建成图片plt.imshow(im,cmap = plt.cm.gray, interpolation='nearest',clim=(0, 255))plt.xlabel(f'{n_components} Components', fontsize = 12)if i==1:plt.title('Original Image', fontsize = 14)else:plt.title(f'{percentages[i-1]*100}% of Explained Variance', fontsize = 14)
plt.show()

在这里插入图片描述

这篇关于DataWhale-(scikit-learn教程)-Task06(主成分分析)-202112的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/544375

相关文章

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

2025版mysql8.0.41 winx64 手动安装详细教程

《2025版mysql8.0.41winx64手动安装详细教程》本文指导Windows系统下MySQL安装配置,包含解压、设置环境变量、my.ini配置、初始化密码获取、服务安装与手动启动等步骤,... 目录一、下载安装包二、配置环境变量三、安装配置四、启动 mysql 服务,修改密码一、下载安装包安装地

电脑提示d3dx11_43.dll缺失怎么办? DLL文件丢失的多种修复教程

《电脑提示d3dx11_43.dll缺失怎么办?DLL文件丢失的多种修复教程》在使用电脑玩游戏或运行某些图形处理软件时,有时会遇到系统提示“d3dx11_43.dll缺失”的错误,下面我们就来分享超... 在计算机使用过程中,我们可能会遇到一些错误提示,其中之一就是缺失某个dll文件。其中,d3dx11_4

Linux下在线安装启动VNC教程

《Linux下在线安装启动VNC教程》本文指导在CentOS7上在线安装VNC,包含安装、配置密码、启动/停止、清理重启步骤及注意事项,强调需安装VNC桌面以避免黑屏,并解决端口冲突和目录权限问题... 目录描述安装VNC安装 VNC 桌面可能遇到的问题总结描js述linux中的VNC就类似于Window

Go语言编译环境设置教程

《Go语言编译环境设置教程》Go语言支持高并发(goroutine)、自动垃圾回收,编译为跨平台二进制文件,云原生兼容且社区活跃,开发便捷,内置测试与vet工具辅助检测错误,依赖模块化管理,提升开发效... 目录Go语言优势下载 Go  配置编译环境配置 GOPROXYIDE 设置(VS Code)一些基本