DataWhale-(scikit-learn教程)-Task05(K均值聚类)-202112

2023-12-27 21:48

本文主要是介绍DataWhale-(scikit-learn教程)-Task05(K均值聚类)-202112,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

sklearn机器学习实战
周志华《机器学习》

一、K均值聚类基本原理及算法

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

二、K均值聚类算法实现

import matplotlib.pyplot as plt
from sklearn.datasets import make_blobs
from sklearn.cluster import KMeans# make_blobs:生成聚类的数据集
# n_samples:生成的样本点个数,n_features:样本特征数,centers:样本中心数
# cluster_std:聚类标准差,shuffle:是否打乱数据,random_state:随机种子
X, y = make_blobs(n_samples=150, n_features=2,centers=4, cluster_std=0.5,shuffle=True, random_state=0)
# 散点图
# c:点的颜色,marker:点的形状,edgecolor:点边缘的形状,s:点的大小
plt.scatter(X[:, 0], X[:, 1],c='white', marker='o',edgecolor='black', s=50)
plt.show()

在这里插入图片描述

# 定义模型
# n_clusters:要形成的簇数,即k均值的k,init:初始化方式,tot:Frobenius 范数收敛的阈值
model = KMeans(n_clusters=4, init='random',n_init=10, max_iter=300, tol=1e-04, random_state=0)
# 训练加预测
y_pred = model.fit_predict(X)
# 画出预测的三个簇类
plt.scatter(X[y_pred == 0, 0], X[y_pred == 0, 1],s=50, c='lightgreen',marker='s', edgecolor='black',label='cluster 1'
)plt.scatter(X[y_pred == 1, 0], X[y_pred == 1, 1],s=50, c='orange',marker='o', edgecolor='black',label='cluster 2'
)plt.scatter(X[y_pred == 2, 0], X[y_pred == 2, 1],s=50, c='lightblue',marker='v', edgecolor='black',label='cluster 3'
)plt.scatter(X[y_pred == 3, 0], X[y_pred == 3, 1],s=50, c='lightblue',marker='v', edgecolor='black',label='cluster 4'
)# 画出聚类中心
plt.scatter(model.cluster_centers_[:, 0], model.cluster_centers_[:, 1],s=250, marker='*',c='red', edgecolor='black',label='centroids'
)
plt.legend(scatterpoints=1)
plt.grid()
plt.show()

在这里插入图片描述

# 计算inertia随着k变化的情况
distortions = []
for i in range(1, 10):model = KMeans(n_clusters=i, init='random',n_init=10, max_iter=300,tol=1e-04, random_state=0)model.fit(X)distortions.append(model.inertia_)
# 画图可以看出k越大inertia越小,追求k越大对应用无益处
plt.plot(range(1, 10), distortions, marker='o')
plt.xlabel('Number of clusters')
plt.ylabel('Distortion')
plt.show()

在这里插入图片描述

这篇关于DataWhale-(scikit-learn教程)-Task05(K均值聚类)-202112的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/544372

相关文章

Nexus安装和启动的实现教程

《Nexus安装和启动的实现教程》:本文主要介绍Nexus安装和启动的实现教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、Nexus下载二、Nexus安装和启动三、关闭Nexus总结一、Nexus下载官方下载链接:DownloadWindows系统根

CnPlugin是PL/SQL Developer工具插件使用教程

《CnPlugin是PL/SQLDeveloper工具插件使用教程》:本文主要介绍CnPlugin是PL/SQLDeveloper工具插件使用教程,具有很好的参考价值,希望对大家有所帮助,如有错... 目录PL/SQL Developer工具插件使用安装拷贝文件配置总结PL/SQL Developer工具插

Java中的登录技术保姆级详细教程

《Java中的登录技术保姆级详细教程》:本文主要介绍Java中登录技术保姆级详细教程的相关资料,在Java中我们可以使用各种技术和框架来实现这些功能,文中通过代码介绍的非常详细,需要的朋友可以参考... 目录1.登录思路2.登录标记1.会话技术2.会话跟踪1.Cookie技术2.Session技术3.令牌技

Python使用Code2flow将代码转化为流程图的操作教程

《Python使用Code2flow将代码转化为流程图的操作教程》Code2flow是一款开源工具,能够将代码自动转换为流程图,该工具对于代码审查、调试和理解大型代码库非常有用,在这篇博客中,我们将深... 目录引言1nVflRA、为什么选择 Code2flow?2、安装 Code2flow3、基本功能演示

Java Spring 中的监听器Listener详解与实战教程

《JavaSpring中的监听器Listener详解与实战教程》Spring提供了多种监听器机制,可以用于监听应用生命周期、会话生命周期和请求处理过程中的事件,:本文主要介绍JavaSprin... 目录一、监听器的作用1.1 应用生命周期管理1.2 会话管理1.3 请求处理监控二、创建监听器2.1 Ser

MySQL 安装配置超完整教程

《MySQL安装配置超完整教程》MySQL是一款广泛使用的开源关系型数据库管理系统(RDBMS),由瑞典MySQLAB公司开发,目前属于Oracle公司旗下产品,:本文主要介绍MySQL安装配置... 目录一、mysql 简介二、下载 MySQL三、安装 MySQL四、配置环境变量五、配置 MySQL5.1

MQTT SpringBoot整合实战教程

《MQTTSpringBoot整合实战教程》:本文主要介绍MQTTSpringBoot整合实战教程,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录MQTT-SpringBoot创建简单 SpringBoot 项目导入必须依赖增加MQTT相关配置编写

在Java中基于Geotools对PostGIS数据库的空间查询实践教程

《在Java中基于Geotools对PostGIS数据库的空间查询实践教程》本文将深入探讨这一实践,从连接配置到复杂空间查询操作,包括点查询、区域范围查询以及空间关系判断等,全方位展示如何在Java环... 目录前言一、相关技术背景介绍1、评价对象AOI2、数据处理流程二、对AOI空间范围查询实践1、空间查

Logback在SpringBoot中的详细配置教程

《Logback在SpringBoot中的详细配置教程》SpringBoot默认会加载classpath下的logback-spring.xml(推荐)或logback.xml作为Logback的配置... 目录1. Logback 配置文件2. 基础配置示例3. 关键配置项说明Appender(日志输出器

Kali Linux安装实现教程(亲测有效)

《KaliLinux安装实现教程(亲测有效)》:本文主要介绍KaliLinux安装实现教程(亲测有效),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、下载二、安装总结一、下载1、点http://www.chinasem.cn击链接 Get Kali | Kal