算法题中常用数学概念、公式、方法汇总(其四:组合学)

2023-12-27 18:04

本文主要是介绍算法题中常用数学概念、公式、方法汇总(其四:组合学),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 组合学
    • 加法原理
    • 乘法原理
    • 排列组合
    • 组合恒等式
    • 二项式定理
  • 华为OD算法/大厂面试高频题算法练习冲刺训练

组合学

加法原理

加法原理是指做一件事情,完成它有n类方式,第一类方式有M1种方法,第二类方式有M2种方法,以此类推,第n类方式有Mn种方法,那么完成这件事情共有M1 + M2 + ... + Mn种方法。

乘法原理

乘法原理是指做一件事,完成它需要分成n个步骤,做第一 步有M1种不同的方法,做第二步有M2种不同的方法,以此类推,做第n步有Mn种不同的方法。那么完成这件事共有 N = M1 × M2 × M3 × ... × Mn 种不同的方法。

排列组合

排列(arrangement/permutation)指的是,从给定个数的元素中取出指定个数的元素并进行排序的过程

组合(combination)指的是,从给定个数的元素中仅仅取出指定个数的元素的过程,不需要考虑排序问题。

考虑从n个小球中取出m个小球的问题,若

  • 这些小球两两之间是不同的(比如存在编号),那么取出的方式记为 A n m A_n^m Anm A ( n , m ) A(n,m) A(n,m),存在公式

A n m = n × ( n − 1 ) × ( n − 2 ) × . . . × ( n − m + 1 ) = n ! ( n − m ) ! A_n^m = n×(n-1)×(n-2)×...×(n-m+1) = \frac{n!}{(n-m)!} Anm=n×(n1)×(n2)×...×(nm+1)=(nm)!n!

  • 这些小球两两之间是全同的,那么取出的方式记为 C n m C_n^m Cnm C ( n , m ) C(n,m) C(n,m),存在公式

C n m = n × ( n − 1 ) × ( n − 2 ) × . . . × ( n − m + 1 ) m × ( m − 1 ) × ( m − 2 ) × . . . × 2 × 1 = n ! m ! ( n − m ) ! = A n m m ! C_n^m = \frac{n×(n-1)×(n-2)×...×(n-m+1)}{m×(m-1)×(m-2)×...×2×1} = \frac{n!}{m!(n-m)!} = \frac{A_n^m}{m!} Cnm=m×(m1)×(m2)×...×2×1n×(n1)×(n2)×...×(nm+1)=m!(nm)!n!=m!Anm

组合恒等式

对于组合而言,存在以下恒等式成立

C n m = C n n − m C_n^m = C_n^{n-m} Cnm=Cnnm
C n m + C n m + 1 = C n + 1 m + 1 C_n^m + C_n^{m+1}= C_{n+1}^{m+1} Cnm+Cnm+1=Cn+1m+1
C n 0 + C n 1 + C n 2 + C n 3 + . . . + C n n − 1 + C n n = ∑ i = 0 n C n i = 2 n C_n^0 + C_n^1+C_n^2+C_n^3+...+C_n^{n-1}+C_n^n = \sum_{i=0}^{n}C_n^i = 2^n Cn0+Cn1+Cn2+Cn3+...+Cnn1+Cnn=i=0nCni=2n

其中最后一个恒等式可以用二项式定理求证。

二项式定理

二项式定理是指,两个数之和的整数次幂可以展开为两整数的多项式之和,具体形式如下

( x + y ) n = C n 0 x 0 y n + C n 1 x 1 y n − 1 + C n 2 x 2 y n − 2 + . . . C n n − 1 x n − 1 y 1 + C n n x n y 0 = ∑ i = 0 n C n i x i y n − i (x+y)^n = C_n^0x^0y^n + C_n^1x^1y^{n-1} + C_n^2x^2y^{n-2} + ... C_n^{n-1}x^{n-1}y^1 + C_n^nx^ny^0 = \sum_{i=0}^{n}C_n^ix^iy^{n-i} (x+y)n=Cn0x0yn+Cn1x1yn1+Cn2x2yn2+...Cnn1xn1y1+Cnnxny0=i=0nCnixiyni

代入 x = 1 x =1 x=1 y = 1 y = 1 y=1,即可得到式子 C n 0 + C n 1 + C n 2 + C n 3 + . . . + C n n − 1 + C n n = ∑ i = 0 n C n i = 2 n C_n^0 + C_n^1+C_n^2+C_n^3+...+C_n^{n-1}+C_n^n = \sum_{i=0}^{n}C_n^i = 2^n Cn0+Cn1+Cn2+Cn3+...+Cnn1+Cnn=i=0nCni=2n


华为OD算法/大厂面试高频题算法练习冲刺训练

  • 华为OD算法/大厂面试高频题算法冲刺训练目前开始常态化报名!目前已服务100+同学成功上岸!

  • 课程讲师为全网50w+粉丝编程博主@吴师兄学算法 以及小红书头部编程博主@闭着眼睛学数理化

  • 每期人数维持在20人内,保证能够最大限度地满足到每一个同学的需求,达到和1v1同样的学习效果!

  • 60+天陪伴式学习,40+直播课时,300+动画图解视频,300+LeetCode经典题,200+华为OD真题/大厂真题,还有简历修改、模拟面试、专属HR对接将为你解锁

  • 可上全网独家的欧弟OJ系统练习华子OD、大厂真题

  • 可查看链接 大厂真题汇总 & OD真题汇总(持续更新)

  • 绿色聊天软件戳 od1336了解更多

这篇关于算法题中常用数学概念、公式、方法汇总(其四:组合学)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/543936

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

MySQL数据库双机热备的配置方法详解

《MySQL数据库双机热备的配置方法详解》在企业级应用中,数据库的高可用性和数据的安全性是至关重要的,MySQL作为最流行的开源关系型数据库管理系统之一,提供了多种方式来实现高可用性,其中双机热备(M... 目录1. 环境准备1.1 安装mysql1.2 配置MySQL1.2.1 主服务器配置1.2.2 从

MyBatis常用XML语法详解

《MyBatis常用XML语法详解》文章介绍了MyBatis常用XML语法,包括结果映射、查询语句、插入语句、更新语句、删除语句、动态SQL标签以及ehcache.xml文件的使用,感兴趣的朋友跟随小... 目录1、定义结果映射2、查询语句3、插入语句4、更新语句5、删除语句6、动态 SQL 标签7、ehc

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

Linux云服务器手动配置DNS的方法步骤

《Linux云服务器手动配置DNS的方法步骤》在Linux云服务器上手动配置DNS(域名系统)是确保服务器能够正常解析域名的重要步骤,以下是详细的配置方法,包括系统文件的修改和常见问题的解决方案,需要... 目录1. 为什么需要手动配置 DNS?2. 手动配置 DNS 的方法方法 1:修改 /etc/res

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

JavaScript对象转数组的三种方法实现

《JavaScript对象转数组的三种方法实现》本文介绍了在JavaScript中将对象转换为数组的三种实用方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友... 目录方法1:使用Object.keys()和Array.map()方法2:使用Object.entr