算法题中常用数学概念、公式、方法汇总(其四:组合学)

2023-12-27 18:04

本文主要是介绍算法题中常用数学概念、公式、方法汇总(其四:组合学),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 组合学
    • 加法原理
    • 乘法原理
    • 排列组合
    • 组合恒等式
    • 二项式定理
  • 华为OD算法/大厂面试高频题算法练习冲刺训练

组合学

加法原理

加法原理是指做一件事情,完成它有n类方式,第一类方式有M1种方法,第二类方式有M2种方法,以此类推,第n类方式有Mn种方法,那么完成这件事情共有M1 + M2 + ... + Mn种方法。

乘法原理

乘法原理是指做一件事,完成它需要分成n个步骤,做第一 步有M1种不同的方法,做第二步有M2种不同的方法,以此类推,做第n步有Mn种不同的方法。那么完成这件事共有 N = M1 × M2 × M3 × ... × Mn 种不同的方法。

排列组合

排列(arrangement/permutation)指的是,从给定个数的元素中取出指定个数的元素并进行排序的过程

组合(combination)指的是,从给定个数的元素中仅仅取出指定个数的元素的过程,不需要考虑排序问题。

考虑从n个小球中取出m个小球的问题,若

  • 这些小球两两之间是不同的(比如存在编号),那么取出的方式记为 A n m A_n^m Anm A ( n , m ) A(n,m) A(n,m),存在公式

A n m = n × ( n − 1 ) × ( n − 2 ) × . . . × ( n − m + 1 ) = n ! ( n − m ) ! A_n^m = n×(n-1)×(n-2)×...×(n-m+1) = \frac{n!}{(n-m)!} Anm=n×(n1)×(n2)×...×(nm+1)=(nm)!n!

  • 这些小球两两之间是全同的,那么取出的方式记为 C n m C_n^m Cnm C ( n , m ) C(n,m) C(n,m),存在公式

C n m = n × ( n − 1 ) × ( n − 2 ) × . . . × ( n − m + 1 ) m × ( m − 1 ) × ( m − 2 ) × . . . × 2 × 1 = n ! m ! ( n − m ) ! = A n m m ! C_n^m = \frac{n×(n-1)×(n-2)×...×(n-m+1)}{m×(m-1)×(m-2)×...×2×1} = \frac{n!}{m!(n-m)!} = \frac{A_n^m}{m!} Cnm=m×(m1)×(m2)×...×2×1n×(n1)×(n2)×...×(nm+1)=m!(nm)!n!=m!Anm

组合恒等式

对于组合而言,存在以下恒等式成立

C n m = C n n − m C_n^m = C_n^{n-m} Cnm=Cnnm
C n m + C n m + 1 = C n + 1 m + 1 C_n^m + C_n^{m+1}= C_{n+1}^{m+1} Cnm+Cnm+1=Cn+1m+1
C n 0 + C n 1 + C n 2 + C n 3 + . . . + C n n − 1 + C n n = ∑ i = 0 n C n i = 2 n C_n^0 + C_n^1+C_n^2+C_n^3+...+C_n^{n-1}+C_n^n = \sum_{i=0}^{n}C_n^i = 2^n Cn0+Cn1+Cn2+Cn3+...+Cnn1+Cnn=i=0nCni=2n

其中最后一个恒等式可以用二项式定理求证。

二项式定理

二项式定理是指,两个数之和的整数次幂可以展开为两整数的多项式之和,具体形式如下

( x + y ) n = C n 0 x 0 y n + C n 1 x 1 y n − 1 + C n 2 x 2 y n − 2 + . . . C n n − 1 x n − 1 y 1 + C n n x n y 0 = ∑ i = 0 n C n i x i y n − i (x+y)^n = C_n^0x^0y^n + C_n^1x^1y^{n-1} + C_n^2x^2y^{n-2} + ... C_n^{n-1}x^{n-1}y^1 + C_n^nx^ny^0 = \sum_{i=0}^{n}C_n^ix^iy^{n-i} (x+y)n=Cn0x0yn+Cn1x1yn1+Cn2x2yn2+...Cnn1xn1y1+Cnnxny0=i=0nCnixiyni

代入 x = 1 x =1 x=1 y = 1 y = 1 y=1,即可得到式子 C n 0 + C n 1 + C n 2 + C n 3 + . . . + C n n − 1 + C n n = ∑ i = 0 n C n i = 2 n C_n^0 + C_n^1+C_n^2+C_n^3+...+C_n^{n-1}+C_n^n = \sum_{i=0}^{n}C_n^i = 2^n Cn0+Cn1+Cn2+Cn3+...+Cnn1+Cnn=i=0nCni=2n


华为OD算法/大厂面试高频题算法练习冲刺训练

  • 华为OD算法/大厂面试高频题算法冲刺训练目前开始常态化报名!目前已服务100+同学成功上岸!

  • 课程讲师为全网50w+粉丝编程博主@吴师兄学算法 以及小红书头部编程博主@闭着眼睛学数理化

  • 每期人数维持在20人内,保证能够最大限度地满足到每一个同学的需求,达到和1v1同样的学习效果!

  • 60+天陪伴式学习,40+直播课时,300+动画图解视频,300+LeetCode经典题,200+华为OD真题/大厂真题,还有简历修改、模拟面试、专属HR对接将为你解锁

  • 可上全网独家的欧弟OJ系统练习华子OD、大厂真题

  • 可查看链接 大厂真题汇总 & OD真题汇总(持续更新)

  • 绿色聊天软件戳 od1336了解更多

这篇关于算法题中常用数学概念、公式、方法汇总(其四:组合学)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/543936

相关文章

MybatisX快速生成增删改查的方法示例

《MybatisX快速生成增删改查的方法示例》MybatisX是基于IDEA的MyBatis/MyBatis-Plus开发插件,本文主要介绍了MybatisX快速生成增删改查的方法示例,文中通过示例代... 目录1 安装2 基本功能2.1 XML跳转2.2 代码生成2.2.1 生成.xml中的sql语句头2

python3 pip终端出现错误解决的方法详解

《python3pip终端出现错误解决的方法详解》这篇文章主要为大家详细介绍了python3pip如果在终端出现错误该如何解决,文中的示例方法讲解详细,感兴趣的小伙伴可以跟随小编一起了解一下... 目录前言一、查看是否已安装pip二、查看是否添加至环境变量1.查看环境变量是http://www.cppcns

Linux给磁盘扩容(LVM方式)的方法实现

《Linux给磁盘扩容(LVM方式)的方法实现》本文主要介绍了Linux给磁盘扩容(LVM方式)的方法实现,涵盖PV/VG/LV概念及操作步骤,具有一定的参考价值,感兴趣的可以了解一下... 目录1 概念2 实战2.1 相关基础命令2.2 开始给LVM扩容2.3 总结最近测试性能,在本地打数据时,发现磁盘空

使用Python实现调用API获取图片存储到本地的方法

《使用Python实现调用API获取图片存储到本地的方法》开发一个自动化工具,用于从JSON数据源中提取图像ID,通过调用指定API获取未经压缩的原始图像文件,并确保下载结果与Postman等工具直接... 目录使用python实现调用API获取图片存储到本地1、项目概述2、核心功能3、环境准备4、代码实现

8种快速易用的Python Matplotlib数据可视化方法汇总(附源码)

《8种快速易用的PythonMatplotlib数据可视化方法汇总(附源码)》你是否曾经面对一堆复杂的数据,却不知道如何让它们变得直观易懂?别慌,Python的Matplotlib库是你数据可视化的... 目录引言1. 折线图(Line Plot)——趋势分析2. 柱状图(Bar Chart)——对比分析3

Nginx 413修改上传文件大小限制的方法详解

《Nginx413修改上传文件大小限制的方法详解》在使用Nginx作为Web服务器时,有时会遇到客户端尝试上传大文件时返回​​413RequestEntityTooLarge​​... 目录1. 理解 ​​413 Request Entity Too Large​​ 错误2. 修改 Nginx 配置2.1

使用@Cacheable注解Redis时Redis宕机或其他原因连不上继续调用原方法的解决方案

《使用@Cacheable注解Redis时Redis宕机或其他原因连不上继续调用原方法的解决方案》在SpringBoot应用中,我们经常使用​​@Cacheable​​注解来缓存数据,以提高应用的性能... 目录@Cacheable注解Redis时,Redis宕机或其他原因连不上,继续调用原方法的解决方案1

sql语句字段截取方法

《sql语句字段截取方法》在MySQL中,使用SUBSTRING函数可以实现字段截取,下面给大家分享sql语句字段截取方法,感兴趣的朋友一起看看吧... 目录sql语句字段截取sql 截取表中指定字段sql语句字段截取1、在mysql中,使用SUBSTRING函数可以实现字段截取。例如,要截取一个字符串字

JAVA数组中五种常见排序方法整理汇总

《JAVA数组中五种常见排序方法整理汇总》本文给大家分享五种常用的Java数组排序方法整理,每种方法结合示例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录前言:法一:Arrays.sort()法二:冒泡排序法三:选择排序法四:反转排序法五:直接插入排序前言:几种常用的Java数组排序

Python将字符串转换为小写字母的几种常用方法

《Python将字符串转换为小写字母的几种常用方法》:本文主要介绍Python中将字符串大写字母转小写的四种方法:lower()方法简洁高效,手动ASCII转换灵活可控,str.translate... 目录一、使用内置方法 lower()(最简单)二、手动遍历 + ASCII 码转换三、使用 str.tr