算法题中常用数学概念、公式、方法汇总(其四:组合学)

2023-12-27 18:04

本文主要是介绍算法题中常用数学概念、公式、方法汇总(其四:组合学),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 组合学
    • 加法原理
    • 乘法原理
    • 排列组合
    • 组合恒等式
    • 二项式定理
  • 华为OD算法/大厂面试高频题算法练习冲刺训练

组合学

加法原理

加法原理是指做一件事情,完成它有n类方式,第一类方式有M1种方法,第二类方式有M2种方法,以此类推,第n类方式有Mn种方法,那么完成这件事情共有M1 + M2 + ... + Mn种方法。

乘法原理

乘法原理是指做一件事,完成它需要分成n个步骤,做第一 步有M1种不同的方法,做第二步有M2种不同的方法,以此类推,做第n步有Mn种不同的方法。那么完成这件事共有 N = M1 × M2 × M3 × ... × Mn 种不同的方法。

排列组合

排列(arrangement/permutation)指的是,从给定个数的元素中取出指定个数的元素并进行排序的过程

组合(combination)指的是,从给定个数的元素中仅仅取出指定个数的元素的过程,不需要考虑排序问题。

考虑从n个小球中取出m个小球的问题,若

  • 这些小球两两之间是不同的(比如存在编号),那么取出的方式记为 A n m A_n^m Anm A ( n , m ) A(n,m) A(n,m),存在公式

A n m = n × ( n − 1 ) × ( n − 2 ) × . . . × ( n − m + 1 ) = n ! ( n − m ) ! A_n^m = n×(n-1)×(n-2)×...×(n-m+1) = \frac{n!}{(n-m)!} Anm=n×(n1)×(n2)×...×(nm+1)=(nm)!n!

  • 这些小球两两之间是全同的,那么取出的方式记为 C n m C_n^m Cnm C ( n , m ) C(n,m) C(n,m),存在公式

C n m = n × ( n − 1 ) × ( n − 2 ) × . . . × ( n − m + 1 ) m × ( m − 1 ) × ( m − 2 ) × . . . × 2 × 1 = n ! m ! ( n − m ) ! = A n m m ! C_n^m = \frac{n×(n-1)×(n-2)×...×(n-m+1)}{m×(m-1)×(m-2)×...×2×1} = \frac{n!}{m!(n-m)!} = \frac{A_n^m}{m!} Cnm=m×(m1)×(m2)×...×2×1n×(n1)×(n2)×...×(nm+1)=m!(nm)!n!=m!Anm

组合恒等式

对于组合而言,存在以下恒等式成立

C n m = C n n − m C_n^m = C_n^{n-m} Cnm=Cnnm
C n m + C n m + 1 = C n + 1 m + 1 C_n^m + C_n^{m+1}= C_{n+1}^{m+1} Cnm+Cnm+1=Cn+1m+1
C n 0 + C n 1 + C n 2 + C n 3 + . . . + C n n − 1 + C n n = ∑ i = 0 n C n i = 2 n C_n^0 + C_n^1+C_n^2+C_n^3+...+C_n^{n-1}+C_n^n = \sum_{i=0}^{n}C_n^i = 2^n Cn0+Cn1+Cn2+Cn3+...+Cnn1+Cnn=i=0nCni=2n

其中最后一个恒等式可以用二项式定理求证。

二项式定理

二项式定理是指,两个数之和的整数次幂可以展开为两整数的多项式之和,具体形式如下

( x + y ) n = C n 0 x 0 y n + C n 1 x 1 y n − 1 + C n 2 x 2 y n − 2 + . . . C n n − 1 x n − 1 y 1 + C n n x n y 0 = ∑ i = 0 n C n i x i y n − i (x+y)^n = C_n^0x^0y^n + C_n^1x^1y^{n-1} + C_n^2x^2y^{n-2} + ... C_n^{n-1}x^{n-1}y^1 + C_n^nx^ny^0 = \sum_{i=0}^{n}C_n^ix^iy^{n-i} (x+y)n=Cn0x0yn+Cn1x1yn1+Cn2x2yn2+...Cnn1xn1y1+Cnnxny0=i=0nCnixiyni

代入 x = 1 x =1 x=1 y = 1 y = 1 y=1,即可得到式子 C n 0 + C n 1 + C n 2 + C n 3 + . . . + C n n − 1 + C n n = ∑ i = 0 n C n i = 2 n C_n^0 + C_n^1+C_n^2+C_n^3+...+C_n^{n-1}+C_n^n = \sum_{i=0}^{n}C_n^i = 2^n Cn0+Cn1+Cn2+Cn3+...+Cnn1+Cnn=i=0nCni=2n


华为OD算法/大厂面试高频题算法练习冲刺训练

  • 华为OD算法/大厂面试高频题算法冲刺训练目前开始常态化报名!目前已服务100+同学成功上岸!

  • 课程讲师为全网50w+粉丝编程博主@吴师兄学算法 以及小红书头部编程博主@闭着眼睛学数理化

  • 每期人数维持在20人内,保证能够最大限度地满足到每一个同学的需求,达到和1v1同样的学习效果!

  • 60+天陪伴式学习,40+直播课时,300+动画图解视频,300+LeetCode经典题,200+华为OD真题/大厂真题,还有简历修改、模拟面试、专属HR对接将为你解锁

  • 可上全网独家的欧弟OJ系统练习华子OD、大厂真题

  • 可查看链接 大厂真题汇总 & OD真题汇总(持续更新)

  • 绿色聊天软件戳 od1336了解更多

这篇关于算法题中常用数学概念、公式、方法汇总(其四:组合学)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/543936

相关文章

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

JavaScript中的高级调试方法全攻略指南

《JavaScript中的高级调试方法全攻略指南》什么是高级JavaScript调试技巧,它比console.log有何优势,如何使用断点调试定位问题,通过本文,我们将深入解答这些问题,带您从理论到实... 目录观点与案例结合观点1观点2观点3观点4观点5高级调试技巧详解实战案例断点调试:定位变量错误性能分

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法

《JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法》:本文主要介绍JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法,每种方法结合实例代码给大家介绍的非常... 目录引言:为什么"相等"判断如此重要?方法1:使用some()+includes()(适合小数组)方法2

SpringBoot 获取请求参数的常用注解及用法

《SpringBoot获取请求参数的常用注解及用法》SpringBoot通过@RequestParam、@PathVariable等注解支持从HTTP请求中获取参数,涵盖查询、路径、请求体、头、C... 目录SpringBoot 提供了多种注解来方便地从 HTTP 请求中获取参数以下是主要的注解及其用法:1

504 Gateway Timeout网关超时的根源及完美解决方法

《504GatewayTimeout网关超时的根源及完美解决方法》在日常开发和运维过程中,504GatewayTimeout错误是常见的网络问题之一,尤其是在使用反向代理(如Nginx)或... 目录引言为什么会出现 504 错误?1. 探索 504 Gateway Timeout 错误的根源 1.1 后端

redis-sentinel基础概念及部署流程

《redis-sentinel基础概念及部署流程》RedisSentinel是Redis的高可用解决方案,通过监控主从节点、自动故障转移、通知机制及配置提供,实现集群故障恢复与服务持续可用,核心组件包... 目录一. 引言二. 核心功能三. 核心组件四. 故障转移流程五. 服务部署六. sentinel部署

MySQL 表空却 ibd 文件过大的问题及解决方法

《MySQL表空却ibd文件过大的问题及解决方法》本文给大家介绍MySQL表空却ibd文件过大的问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录一、问题背景:表空却 “吃满” 磁盘的怪事二、问题复现:一步步编程还原异常场景1. 准备测试源表与数据

python 线程池顺序执行的方法实现

《python线程池顺序执行的方法实现》在Python中,线程池默认是并发执行任务的,但若需要实现任务的顺序执行,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋... 目录方案一:强制单线程(伪顺序执行)方案二:按提交顺序获取结果方案三:任务间依赖控制方案四:队列顺序消

SpringBoot通过main方法启动web项目实践

《SpringBoot通过main方法启动web项目实践》SpringBoot通过SpringApplication.run()启动Web项目,自动推断应用类型,加载初始化器与监听器,配置Spring... 目录1. 启动入口:SpringApplication.run()2. SpringApplicat