pytorch 实现 Restormer 主要模块(多头通道自注意力机制和门控制结构)

本文主要是介绍pytorch 实现 Restormer 主要模块(多头通道自注意力机制和门控制结构),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        前面的博文读论文:Restormer: Efficient Transformer for High-Resolution Image Restoration 介绍了 Restormer 网络结构的网络技术特点,本文用 pytorch 实现其中的主要网络结构模块。

1. MDTA(Multi-Dconv Head Transposed Attention:多头注意力机制

## Multi-DConv Head Transposed Self-Attention (MDTA)
class Attention(nn.Module):def __init__(self, dim, num_heads, bias):super(Attention, self).__init__()self.num_heads = num_heads  # 注意力头的个数self.temperature = nn.Parameter(torch.ones(num_heads, 1, 1))  # 可学习系数# 1*1 升维self.qkv = nn.Conv2d(dim, dim*3, kernel_size=1, bias=bias)# 3*3 分组卷积self.qkv_dwconv = nn.Conv2d(dim*3, dim*3, kernel_size=3, stride=1, padding=1, groups=dim*3, bias=bias)# 1*1 卷积self.project_out = nn.Conv2d(dim, dim, kernel_size=1, bias=bias)def forward(self, x):b,c,h,w = x.shape  # 输入的结构 batch 数,通道数和高宽qkv = self.qkv_dwconv(self.qkv(x))q,k,v = qkv.chunk(3, dim=1)  #  第 1 个维度方向切分成 3 块# 改变 q, k, v 的结构为 b head c (h w),将每个二维 plane 展平q = rearrange(q, 'b (head c) h w -> b head c (h w)', head=self.num_heads)k = rearrange(k, 'b (head c) h w -> b head c (h w)', head=self.num_heads)v = rearrange(v, 'b (head c) h w -> b head c (h w)', head=self.num_heads)q = torch.nn.functional.normalize(q, dim=-1)  # C 维度标准化,这里的 C 与通道维度略有不同k = torch.nn.functional.normalize(k, dim=-1)attn = (q @ k.transpose(-2, -1)) * self.temperature # @ 是矩阵乘attn = attn.softmax(dim=-1)out = (attn @ v)  # 注意力图(严格来说不算图)# 将展平后的注意力图恢复out = rearrange(out, 'b head c (h w) -> b (head c) h w', head=self.num_heads, h=h, w=w)# 真正的注意力图out = self.project_out(out)return out

2. GDFN( Gated-Dconv Feed-Forward Network) 

## Gated-Dconv Feed-Forward Network (GDFN)
class FeedForward(nn.Module):def __init__(self, dim, ffn_expansion_factor, bias):super(FeedForward, self).__init__()# 隐藏层特征维度等于输入维度乘以扩张因子hidden_features = int(dim*ffn_expansion_factor)# 1*1 升维self.project_in = nn.Conv2d(dim, hidden_features*2, kernel_size=1, bias=bias)# 3*3 分组卷积self.dwconv = nn.Conv2d(hidden_features*2, hidden_features*2, kernel_size=3, stride=1, padding=1, groups=hidden_features*2, bias=bias)# 1*1 降维self.project_out = nn.Conv2d(hidden_features, dim, kernel_size=1, bias=bias)def forward(self, x):x = self.project_in(x)x1, x2 = self.dwconv(x).chunk(2, dim=1)  # 第 1 个维度方向切分成 2 块x = F.gelu(x1) * x2  # gelu 相当于 relu+dropoutx = self.project_out(x)return x

3. TransformerBlock

## 就是标准的 Transformer 架构
class TransformerBlock(nn.Module):def __init__(self, dim, num_heads, ffn_expansion_factor, bias, LayerNorm_type):super(TransformerBlock, self).__init__()self.norm1 = LayerNorm(dim, LayerNorm_type)  # 层标准化self.attn = Attention(dim, num_heads, bias)  # 自注意力self.norm2 = LayerNorm(dim, LayerNorm_type)  # 层表转化self.ffn = FeedForward(dim, ffn_expansion_factor, bias)  # FFNdef forward(self, x):x = x + self.attn(self.norm1(x))  # 残差x = x + self.ffn(self.norm2(x))  # 残差return x

4. 测试样例

model = Restormer()
print(model)  # 打印网络结构x = torch.randn((1, 3, 512, 512))  #随机生成输入图像
x = model(x)  # 送入网络
print(x.shape) # 打印网络输入的图像结构

这篇关于pytorch 实现 Restormer 主要模块(多头通道自注意力机制和门控制结构)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/543179

相关文章

基于 HTML5 Canvas 实现图片旋转与下载功能(完整代码展示)

《基于HTML5Canvas实现图片旋转与下载功能(完整代码展示)》本文将深入剖析一段基于HTML5Canvas的代码,该代码实现了图片的旋转(90度和180度)以及旋转后图片的下载... 目录一、引言二、html 结构分析三、css 样式分析四、JavaScript 功能实现一、引言在 Web 开发中,

SpringBoot中使用Flux实现流式返回的方法小结

《SpringBoot中使用Flux实现流式返回的方法小结》文章介绍流式返回(StreamingResponse)在SpringBoot中通过Flux实现,优势包括提升用户体验、降低内存消耗、支持长连... 目录背景流式返回的核心概念与优势1. 提升用户体验2. 降低内存消耗3. 支持长连接与实时通信在Sp

Conda虚拟环境的复制和迁移的四种方法实现

《Conda虚拟环境的复制和迁移的四种方法实现》本文主要介绍了Conda虚拟环境的复制和迁移的四种方法实现,包括requirements.txt,environment.yml,conda-pack,... 目录在本机复制Conda虚拟环境相同操作系统之间复制环境方法一:requirements.txt方法

Spring Boot 实现 IP 限流的原理、实践与利弊解析

《SpringBoot实现IP限流的原理、实践与利弊解析》在SpringBoot中实现IP限流是一种简单而有效的方式来保障系统的稳定性和可用性,本文给大家介绍SpringBoot实现IP限... 目录一、引言二、IP 限流原理2.1 令牌桶算法2.2 漏桶算法三、使用场景3.1 防止恶意攻击3.2 控制资源

springboot下载接口限速功能实现

《springboot下载接口限速功能实现》通过Redis统计并发数动态调整每个用户带宽,核心逻辑为每秒读取并发送限定数据量,防止单用户占用过多资源,确保整体下载均衡且高效,本文给大家介绍spring... 目录 一、整体目标 二、涉及的主要类/方法✅ 三、核心流程图解(简化) 四、关键代码详解1️⃣ 设置

Nginx 配置跨域的实现及常见问题解决

《Nginx配置跨域的实现及常见问题解决》本文主要介绍了Nginx配置跨域的实现及常见问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来... 目录1. 跨域1.1 同源策略1.2 跨域资源共享(CORS)2. Nginx 配置跨域的场景2.1

Python中提取文件名扩展名的多种方法实现

《Python中提取文件名扩展名的多种方法实现》在Python编程中,经常会遇到需要从文件名中提取扩展名的场景,Python提供了多种方法来实现这一功能,不同方法适用于不同的场景和需求,包括os.pa... 目录技术背景实现步骤方法一:使用os.path.splitext方法二:使用pathlib模块方法三

CSS实现元素撑满剩余空间的五种方法

《CSS实现元素撑满剩余空间的五种方法》在日常开发中,我们经常需要让某个元素占据容器的剩余空间,本文将介绍5种不同的方法来实现这个需求,并分析各种方法的优缺点,感兴趣的朋友一起看看吧... css实现元素撑满剩余空间的5种方法 在日常开发中,我们经常需要让某个元素占据容器的剩余空间。这是一个常见的布局需求

HTML5 getUserMedia API网页录音实现指南示例小结

《HTML5getUserMediaAPI网页录音实现指南示例小结》本教程将指导你如何利用这一API,结合WebAudioAPI,实现网页录音功能,从获取音频流到处理和保存录音,整个过程将逐步... 目录1. html5 getUserMedia API简介1.1 API概念与历史1.2 功能与优势1.3

Java实现删除文件中的指定内容

《Java实现删除文件中的指定内容》在日常开发中,经常需要对文本文件进行批量处理,其中,删除文件中指定内容是最常见的需求之一,下面我们就来看看如何使用java实现删除文件中的指定内容吧... 目录1. 项目背景详细介绍2. 项目需求详细介绍2.1 功能需求2.2 非功能需求3. 相关技术详细介绍3.1 Ja