pytorch 实现 Restormer 主要模块(多头通道自注意力机制和门控制结构)

本文主要是介绍pytorch 实现 Restormer 主要模块(多头通道自注意力机制和门控制结构),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        前面的博文读论文:Restormer: Efficient Transformer for High-Resolution Image Restoration 介绍了 Restormer 网络结构的网络技术特点,本文用 pytorch 实现其中的主要网络结构模块。

1. MDTA(Multi-Dconv Head Transposed Attention:多头注意力机制

## Multi-DConv Head Transposed Self-Attention (MDTA)
class Attention(nn.Module):def __init__(self, dim, num_heads, bias):super(Attention, self).__init__()self.num_heads = num_heads  # 注意力头的个数self.temperature = nn.Parameter(torch.ones(num_heads, 1, 1))  # 可学习系数# 1*1 升维self.qkv = nn.Conv2d(dim, dim*3, kernel_size=1, bias=bias)# 3*3 分组卷积self.qkv_dwconv = nn.Conv2d(dim*3, dim*3, kernel_size=3, stride=1, padding=1, groups=dim*3, bias=bias)# 1*1 卷积self.project_out = nn.Conv2d(dim, dim, kernel_size=1, bias=bias)def forward(self, x):b,c,h,w = x.shape  # 输入的结构 batch 数,通道数和高宽qkv = self.qkv_dwconv(self.qkv(x))q,k,v = qkv.chunk(3, dim=1)  #  第 1 个维度方向切分成 3 块# 改变 q, k, v 的结构为 b head c (h w),将每个二维 plane 展平q = rearrange(q, 'b (head c) h w -> b head c (h w)', head=self.num_heads)k = rearrange(k, 'b (head c) h w -> b head c (h w)', head=self.num_heads)v = rearrange(v, 'b (head c) h w -> b head c (h w)', head=self.num_heads)q = torch.nn.functional.normalize(q, dim=-1)  # C 维度标准化,这里的 C 与通道维度略有不同k = torch.nn.functional.normalize(k, dim=-1)attn = (q @ k.transpose(-2, -1)) * self.temperature # @ 是矩阵乘attn = attn.softmax(dim=-1)out = (attn @ v)  # 注意力图(严格来说不算图)# 将展平后的注意力图恢复out = rearrange(out, 'b head c (h w) -> b (head c) h w', head=self.num_heads, h=h, w=w)# 真正的注意力图out = self.project_out(out)return out

2. GDFN( Gated-Dconv Feed-Forward Network) 

## Gated-Dconv Feed-Forward Network (GDFN)
class FeedForward(nn.Module):def __init__(self, dim, ffn_expansion_factor, bias):super(FeedForward, self).__init__()# 隐藏层特征维度等于输入维度乘以扩张因子hidden_features = int(dim*ffn_expansion_factor)# 1*1 升维self.project_in = nn.Conv2d(dim, hidden_features*2, kernel_size=1, bias=bias)# 3*3 分组卷积self.dwconv = nn.Conv2d(hidden_features*2, hidden_features*2, kernel_size=3, stride=1, padding=1, groups=hidden_features*2, bias=bias)# 1*1 降维self.project_out = nn.Conv2d(hidden_features, dim, kernel_size=1, bias=bias)def forward(self, x):x = self.project_in(x)x1, x2 = self.dwconv(x).chunk(2, dim=1)  # 第 1 个维度方向切分成 2 块x = F.gelu(x1) * x2  # gelu 相当于 relu+dropoutx = self.project_out(x)return x

3. TransformerBlock

## 就是标准的 Transformer 架构
class TransformerBlock(nn.Module):def __init__(self, dim, num_heads, ffn_expansion_factor, bias, LayerNorm_type):super(TransformerBlock, self).__init__()self.norm1 = LayerNorm(dim, LayerNorm_type)  # 层标准化self.attn = Attention(dim, num_heads, bias)  # 自注意力self.norm2 = LayerNorm(dim, LayerNorm_type)  # 层表转化self.ffn = FeedForward(dim, ffn_expansion_factor, bias)  # FFNdef forward(self, x):x = x + self.attn(self.norm1(x))  # 残差x = x + self.ffn(self.norm2(x))  # 残差return x

4. 测试样例

model = Restormer()
print(model)  # 打印网络结构x = torch.randn((1, 3, 512, 512))  #随机生成输入图像
x = model(x)  # 送入网络
print(x.shape) # 打印网络输入的图像结构

这篇关于pytorch 实现 Restormer 主要模块(多头通道自注意力机制和门控制结构)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/543179

相关文章

分布式锁在Spring Boot应用中的实现过程

《分布式锁在SpringBoot应用中的实现过程》文章介绍在SpringBoot中通过自定义Lock注解、LockAspect切面和RedisLockUtils工具类实现分布式锁,确保多实例并发操作... 目录Lock注解LockASPect切面RedisLockUtils工具类总结在现代微服务架构中,分布

Java使用Thumbnailator库实现图片处理与压缩功能

《Java使用Thumbnailator库实现图片处理与压缩功能》Thumbnailator是高性能Java图像处理库,支持缩放、旋转、水印添加、裁剪及格式转换,提供易用API和性能优化,适合Web应... 目录1. 图片处理库Thumbnailator介绍2. 基本和指定大小图片缩放功能2.1 图片缩放的

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

PyCharm中配置PyQt的实现步骤

《PyCharm中配置PyQt的实现步骤》PyCharm是JetBrains推出的一款强大的PythonIDE,结合PyQt可以进行pythion高效开发桌面GUI应用程序,本文就来介绍一下PyCha... 目录1. 安装China编程PyQt1.PyQt 核心组件2. 基础 PyQt 应用程序结构3. 使用 Q

Python实现批量提取BLF文件时间戳

《Python实现批量提取BLF文件时间戳》BLF(BinaryLoggingFormat)作为Vector公司推出的CAN总线数据记录格式,被广泛用于存储车辆通信数据,本文将使用Python轻松提取... 目录一、为什么需要批量处理 BLF 文件二、核心代码解析:从文件遍历到数据导出1. 环境准备与依赖库