# [cs231n (六)神经网络 part 2:传入数据和损失 ][1]

2023-12-27 10:38

本文主要是介绍# [cs231n (六)神经网络 part 2:传入数据和损失 ][1],希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

cs231n (六)神经网络 part 2:传入数据和损失

标签(空格分隔): 神经网络

文章目录

  • [cs231n (六)神经网络 part 2:传入数据和损失 ][1]
  • 同类文章
  • 0.回顾
  • 1. 引言
  • 2. 初始化数据和模型
      • 1. 数据预处理阶段
        • **处理方式:**
        • **白化和PCA**
      • 2. 权重初始化
      • 3.批归一化
      • 4. 正则化
  • 3. 损失函数
  • 4. 总结
  • 转载和疑问声明
  • 我祝各位帅哥,和美女,你们永远十八岁,嗨嘿嘿~~~

同类文章

cs231n (一)图像分类识别讲了KNN
cs231n (二)讲了线性分类器:SVM和SoftMax
cs231n (三)优化问题及方法
cs231n (四)反向传播
cs231n (五)神经网络 part 1:构建架构
cs231n (六)神经网络 part 2:传入数据和损失
cs231n (七)神经网络 part 3 : 学习和评估
cs231n (八)神经网络总结:最小网络案例研究
cs231n (九)卷积神经网络


0.回顾

cs231n (一)图像分类识别讲了KNN
cs231n (二)讲了线性分类器:SVM和SoftMax
cs231n (三)优化问题及方法
cs231n (四)反向传播
cs231n (五)神经网络(part 1) 构建架构

1. 引言

五系列我们讲了神经元模型,主要是加个激活函数,然后定义损失,然后梯度下降。

2. 初始化数据和模型

这里主要是数据预处理、权重初始化啦、还有损失函数的构建,优化问题不要着急哈。

1. 数据预处理阶段

这个可是很重要的级阶段,就像你做饭,食材是很重要的。
基本术语和符号:数据矩阵X = [NxD] = 100x3072

处理方式:
  1. 减去均值,一般也称作去中心化:想象一个数据云图,就是把他们移到原点
    实现代码: X -= np.mean(X, axis=0),或者 X -= np.mean(X)

  2. 归一化数据, 将维度中心化,就是让大家相差不太,数值近似相等
    实现方法:

  • 先对数据零中心化,然后除以标准差: X /= np.std(X, axis=0)
  • 对每个维度都做归一化,使得他们范围一致【-1,1】,适用于:数据特征的计算单位不一样。

1

上述预处理方法可以从这里看出:左 原始数据,中:减去均值方法,右:除以标准差之后的


白化和PCA

主要方法:先对数据零中心化,然后计算协方差矩阵。

# 输入数据矩阵X = [N x D]
X -= np.mean(X, axis = 0) # 进行零中心化 重点
cov = np.dot(X.T, X) / X.shape[0] # 得到协方差矩阵

协方差矩阵是什么? 第(i,j)的元素就是第i个数据的j维度的协方差,矩阵的对角线上是元素的方差,我们可以对协方差矩阵进行SVD奇异值分解

U,S,V = np.linalg.svd(cov)

其中 U的列是特征向量,S 是含有奇异值的1维数组,为达到去除数据的相关性,我们把去零中心化的数据投影到特征基上

Xrot = np.dot(X,U) # 去相关性

np.linalg.svd的返回值U中,特征向量是按照特征值的大小排列的,这样就可以进行数据降维了俗称主成分分析PCA,详细内容可以查看我的博客。

Xrot_reduced = np.dot(X, U[:,:100]) # Xrot_reduced 变成了 [N x 100]

这样原始数据就降维到了 Nx100

接下来说一下白化,输入:特征基准上的数据,对每个维度除以其特征值实现归一化。

因为数据一般是符合高斯分布的,白化后,那么得到均值是零,协方差是相等的矩阵。

Xwhite = Xrot / np.sqrt(S + 1e-5),这里添加了1e-5是防止分母是零情况

2

依次是:原始,PCA, 白化后的数据。


可以看看对于实际数据预处理之后的样子。

3

左:原始数据,中:3072特征值向量的最大的144,右:PCA降维后的数据,右右:白化数据


注意的是:我们一般是在训练集上进行数据进行预处理,验证和测试集减去的是训练数据均值

2. 权重初始化

训练前我们是没有权重的怎么办?
随机啊 !聪明! 你简直就是个天才,看看爱因斯坦怎么说的吧

全零肯定不行

  • 随机数(比较小的) W = 0.01 * np.random.randn(D,H), 想想嘛,数值太小,梯度又穿不透很深的网络,还有有一定问题滴,随着输入数据量的增长,随机初始化的神经元的输出数据的分布中的方差也在增大

  • 1/sqrt(n)校准方差 :w = np.random.randn(n) / sqrt(n), n是输入数据的数量,

  • 稀疏初始化,权重矩阵设为零,神经元随机链接,不好不好。

  • 偏置初始化,一般是零, 至于其他的你可以多尝试呗。

3.批归一化

批量归一化:在网络的每一层之前都做预处理,只不过是以另一种方式与网络集成在了一起

4. 正则化

上节内容已经说过了,就是用来防止过拟合的常见的有:

  • L2正则化:就是二范数,就是$ \frac{1}{2}\lambda w^2$
  • L1正则化:就是一范数,其实就是 $ \lambda_1|w|+\lambda_2w^2 $
  • 最大范式约束:加一个限制: ∣ ∣ w → ∣ ∣ 2 < c ||\overrightarrow{w}||_2<c w 2<c 就算学习率很大也不会出现数值爆炸。
  • 随机死亡:dropout: 来源于这里

4

 """ Vanilla Dropout: Not recommended implementation (see notes below) """p = 0.5 # probability of keeping a unit active. higher = less dropoutdef train_step(X):""" X contains the data """# forward pass for example 3-layer neural networkH1 = np.maximum(0, np.dot(W1, X) + b1)U1 = np.random.rand(*H1.shape) < p # first dropout maskH1 *= U1 # drop!H2 = np.maximum(0, np.dot(W2, H1) + b2)U2 = np.random.rand(*H2.shape) < p # second dropout maskH2 *= U2 # drop!out = np.dot(W3, H2) + b3# backward pass: compute gradients... (not shown)# perform parameter update... (not shown)def predict(X):# ensembled forward passH1 = np.maximum(0, np.dot(W1, X) + b1) * p # NOTE: scale the activations (要乘上p)H2 = np.maximum(0, np.dot(W2, H1) + b2) * p # NOTE: scale the activationsout = np.dot(W3, H2) + b3

实际更多使用反向随机失活(inverted dropout)

""" 
Inverted Dropout: Recommended implementation example.
We drop and scale at train time and don't do anything at test time.
"""p = 0.5 # probability of keeping a unit active. higher = less dropoutdef train_step(X):# forward pass for example 3-layer neural networkH1 = np.maximum(0, np.dot(W1, X) + b1)U1 = (np.random.rand(*H1.shape) < p) / p # first dropout mask. Notice /p!H1 *= U1 # drop!H2 = np.maximum(0, np.dot(W2, H1) + b2)U2 = (np.random.rand(*H2.shape) < p) / p # second dropout mask. Notice /p!H2 *= U2 # drop!out = np.dot(W3, H2) + b3# backward pass: compute gradients... (not shown)# perform parameter update... (not shown)def predict(X):# ensembled forward passH1 = np.maximum(0, np.dot(W1, X) + b1) # no scaling necessaryH2 = np.maximum(0, np.dot(W2, H1) + b2)out = np.dot(W3, H2) + b3

3. 损失函数

前面我们已经学过了 SVM and Softmax
L i = ∑ j ≠ y i m a x ( 0 , f j − f y i + 1 ) \displaystyle L_i=\sum_{j\not=y_i}max(0,f_j-f_{y_i}+1) Li=j=yimax(0,fjfyi+1)
L i = − l o g ( e f y i ∑ j e f j ) \displaystyle L_i=-log(\frac{e^{f_{y_i}}}{\sum_je^{f_j}}) Li=log(jefjefyi)

标签数目很大怎么办? 使用softmax分层,

回归问题:预测实数的值的问题,预测房价,预测图片东西的长度
对于这种问题,计算预测值和真实值之间的损失就够了。
然后用L2平方范式或L1范式取相似度 L i = ∣ ∣ f − y i ∣ ∣ 2 2 L_i=||f-y_i||^2_2 Li=fyi22

4. 总结

直接看目录不就知道了哇,哈哈。
预处理————正则化方法————损失函数


转载和疑问声明

如果你有什么疑问或者想要转载,没有允许是不能转载的哈
赞赏一下能不能转?哈哈,联系我啊,我告诉你呢 ~~
欢迎联系我哈,我会给大家慢慢解答啦~~~怎么联系我? 笨啊~ ~~ 你留言也行

你关注微信公众号1.机器学习算法工程师:2.或者扫那个二维码,后台发送 “我要找朕”,联系我也行啦!

(爱心.gif) 么么哒 ~么么哒 ~么么哒
码字不易啊啊啊,如果你觉得本文有帮助,三毛也是爱!

我祝各位帅哥,和美女,你们永远十八岁,嗨嘿嘿~~~

这篇关于# [cs231n (六)神经网络 part 2:传入数据和损失 ][1]的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/542846

相关文章

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

MySQL中查询和展示LONGBLOB类型数据的技巧总结

《MySQL中查询和展示LONGBLOB类型数据的技巧总结》在MySQL中LONGBLOB是一种二进制大对象(BLOB)数据类型,用于存储大量的二进制数据,:本文主要介绍MySQL中查询和展示LO... 目录前言1. 查询 LONGBLOB 数据的大小2. 查询并展示 LONGBLOB 数据2.1 转换为十

使用SpringBoot+InfluxDB实现高效数据存储与查询

《使用SpringBoot+InfluxDB实现高效数据存储与查询》InfluxDB是一个开源的时间序列数据库,特别适合处理带有时间戳的监控数据、指标数据等,下面详细介绍如何在SpringBoot项目... 目录1、项目介绍2、 InfluxDB 介绍3、Spring Boot 配置 InfluxDB4、I

Java整合Protocol Buffers实现高效数据序列化实践

《Java整合ProtocolBuffers实现高效数据序列化实践》ProtocolBuffers是Google开发的一种语言中立、平台中立、可扩展的结构化数据序列化机制,类似于XML但更小、更快... 目录一、Protocol Buffers简介1.1 什么是Protocol Buffers1.2 Pro

Python实现数据可视化图表生成(适合新手入门)

《Python实现数据可视化图表生成(适合新手入门)》在数据科学和数据分析的新时代,高效、直观的数据可视化工具显得尤为重要,下面:本文主要介绍Python实现数据可视化图表生成的相关资料,文中通过... 目录前言为什么需要数据可视化准备工作基本图表绘制折线图柱状图散点图使用Seaborn创建高级图表箱线图热

MySQL数据脱敏的实现方法

《MySQL数据脱敏的实现方法》本文主要介绍了MySQL数据脱敏的实现方法,包括字符替换、加密等方法,通过工具类和数据库服务整合,确保敏感信息在查询结果中被掩码处理,感兴趣的可以了解一下... 目录一. 数据脱敏的方法二. 字符替换脱敏1. 创建数据脱敏工具类三. 整合到数据库操作1. 创建服务类进行数据库

MySQL中处理数据的并发一致性的实现示例

《MySQL中处理数据的并发一致性的实现示例》在MySQL中处理数据的并发一致性是确保多个用户或应用程序同时访问和修改数据库时,不会导致数据冲突、数据丢失或数据不一致,MySQL通过事务和锁机制来管理... 目录一、事务(Transactions)1. 事务控制语句二、锁(Locks)1. 锁类型2. 锁粒

Qt中实现多线程导出数据功能的四种方式小结

《Qt中实现多线程导出数据功能的四种方式小结》在以往的项目开发中,在很多地方用到了多线程,本文将记录下在Qt开发中用到的多线程技术实现方法,以导出指定范围的数字到txt文件为例,展示多线程不同的实现方... 目录前言导出文件的示例工具类QThreadQObject的moveToThread方法实现多线程QC