数据冒险之单链表

2023-12-27 09:08
文章标签 数据 单链 冒险

本文主要是介绍数据冒险之单链表,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

定义链表的结点:Node.h

#ifndef NODE_H
#define NODE_Hclass Node
{
public:int data;Node *next;void printNode();
};
#endif 

打印结点数据:Node.cpp

#include"Node.h"
#include<iostream>
using namespace std;void Node::printNode()
{cout << data << endl;
}

List.h

/*单链表*/
#ifndef LIST_H
#define LIST_H#include"Node.h"
class List
{
public:List();										    //创建线性表 ~List();                                        //销毁线性表 void ClearList();                               //清空 bool ListEmpty();                                //判空 int  ListLength();                               //获取线性表长度 bool GetElem(int i, Node *pNode);                //获取指定元素 int LocateElem(Node *pNode);                         //定位元素 寻找第一个满足e的元素的位序 bool PriorElem(Node *pCurrentNode, Node *pPreNode);//获取指定元素的前驱 bool NextElem(Node *pCurrentNode, Node *pNextNode);//获取指定元素的后继 void ListTraverse();								 //遍历线性表 bool ListInsert(int i, Node *pNode);				 //在第i个位置插入元素 bool ListDelete(int i, Node *pNode);				  //删除第i个位置的元素 bool ListInsertHead(Node *pNode);bool ListInsertTail(Node *pNode);
private:Node *m_pList;int  m_iLength;//当前长度 
};
#endif
List.cpp

#include<iostream>
#include"List.h"
using namespace std;List::List()
{m_pList = new Node;m_pList->data = 0;m_pList->next = NULL;m_iLength = 0;
}
List::~List()
{ClearList();delete m_pList;m_pList = NULL;
}
void List::ClearList()
{Node *currentNode = m_pList->next;while (currentNode != NULL){Node *temp = currentNode->next;delete currentNode;currentNode = temp;}m_pList->next = NULL;m_iLength = 0;
}
bool List::ListEmpty()
{if (0 == m_iLength)return true;elsereturn false;}
int List::ListLength()
{return m_iLength;
}
bool List::GetElem(int i, Node *pNode)
{if (i<0 || i >= m_iLength)return false;Node *currentNode = m_pList;for (int k = 0; k <= i; k++){currentNode = currentNode->next;}pNode->data = currentNode->data;return true;
}
int List::LocateElem(Node *pNode)
{Node *currentNode = m_pList;int count = 0;while (currentNode->next != NULL){currentNode = currentNode->next;if (currentNode->data == pNode->data){return count;           //小细节:当有重复时,只会返回第一次出现的 }count++;//为什么放后面?小细节:头节点数据域无意义,0是我们找到的头节点后的第一个节点 }return -1;
}bool List::PriorElem(Node *pCurrentNode, Node *pPreNode)
{Node *currentNode = m_pList;Node *currentNodeBefore = NULL;while (currentNode->next != NULL){currentNodeBefore = currentNode;currentNode = currentNode->next;if (currentNode->data == pCurrentNode->data){if (currentNodeBefore == m_pList)return false;pPreNode->data = currentNodeBefore->data;return true;}}return false;}
bool List::NextElem(Node *pCurrentNode, Node *pNextNode)
{Node *currentNode = m_pList;while (currentNode->next != NULL){currentNode = currentNode->next;if (currentNode->data == pCurrentNode->data){if (currentNode->next == NULL)return false;pNextNode->data = currentNode->next->data;return true;}}return false;
}void List::ListTraverse()
{Node *currentNode = m_pList;while (currentNode->next != NULL){currentNode = currentNode->next;currentNode->printNode();}cout << "m_iLength = " << m_iLength << endl;
}bool List::ListInsertHead(Node *pNode)
{Node *temp = m_pList->next;  //头节点指向下一个结点的地址赋给temp保存起来Node *newNode = new Node;if (newNode == NULL)        //如果申请内存失败return false;newNode->data = pNode->data;//数据域先赋给新结点m_pList->next = newNode;     //头结点与新结点连接newNode->next = temp;       //新结点与后面结点连接的m_iLength++;                //插入成功长度加1return true;}bool List::ListInsertTail(Node *pNode)
{Node *currentNode = m_pList;while (currentNode->next != NULL)   //先找到尾结点{currentNode = currentNode->next;}Node *newNode = new Node;if (newNode == NULL)            //申请内存是否成功return  false;newNode->data = pNode->data;   //数据域先赋给新结点newNode->next = NULL;           //插入后充当尾部currentNode->next = newNode;  // 插入前的尾部与新结点连接m_iLength++;           //插入成功长度加1return true;
}bool List::ListInsert(int i, Node *pNode)
{if (i<0 || i>m_iLength)    //插入位置合理性判断return false;Node *currentNode = m_pList;for (int k = 0; k<i; k++)          //找到要插入的位置{currentNode = currentNode->next;}Node *newNode = new Node;      //申请新结点if (newNode == NULL)          //申请是否成功return  false;newNode->data = pNode->data;  //数据域传入newNode->next = currentNode->next;//当前结点所指向的下一结点的地址传给新结点currentNode->next = newNode;//当前结点与新结点连接m_iLength++;              //插入成功长度加1return true;
}bool List::ListDelete(int i, Node *pNode)
{if (i<0 || i >= m_iLength)    //删除合理性判断return false;Node *currentNode = m_pList;Node *currentNodeBefore = NULL;//当前结点前一结点for (int k = 0; k <= i; k++)     //找到删除位置和前一结点{currentNodeBefore = currentNode;currentNode = currentNode->next;}currentNodeBefore->next = currentNode->next;//当前结点的前一结点与其后一结点直接相连,相当于删除当前结点pNode->data = currentNode->data;//删除数据传出delete currentNode;      //释放内存,已经没用了currentNode = NULL;       //为了安全指为NULLm_iLength--;            //删除成功长度-1return true;
}

main.cpp

#include<iostream>
#include"List.h" 
using namespace std;int main(void)
{Node node1;node1.data = 3;Node node2;node2.data = 4;Node node3;node3.data = 5;Node node4;node4.data = 6;Node node5;node5.data = 77;List *pList = new List();cout << "从头部插入:" << endl;pList->ListInsertHead(&node1);pList->ListInsertHead(&node2);pList->ListInsertHead(&node3);pList->ListInsertHead(&node4);pList->ListTraverse();cout << "清除~~~";pList->ClearList();cout << "清除~~~DONE" << endl;cout << "从尾部插入:" << endl;pList->ListInsertTail(&node1);pList->ListInsertTail(&node2);pList->ListInsertTail(&node3);pList->ListInsertTail(&node4);pList->ListTraverse();cout << "从位置2插入 :" << endl;pList->ListInsert(2, &node5);pList->ListTraverse();cout << "从位置3删除 :" << endl;Node temp;pList->ListDelete(3, &temp);pList->ListTraverse();cout << "从位置1取出放入temp" << endl;pList->GetElem(1, &temp);cout << "temp = " << temp.data << endl;pList->PriorElem(&node2, &temp);cout << "从位置1取前驱temp" << endl;cout << "temp = " << temp.data << endl;pList->NextElem(&node2, &temp);cout << "从位置1取后继temp" << endl;cout << "temp = " << temp.data << endl;cout << "isEmpte:" << boolalpha << pList->ListEmpty() << endl;delete pList;pList = NULL;return 0;
}




这篇关于数据冒险之单链表的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/542618

相关文章

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

C#使用iText获取PDF的trailer数据的代码示例

《C#使用iText获取PDF的trailer数据的代码示例》开发程序debug的时候,看到了PDF有个trailer数据,挺有意思,于是考虑用代码把它读出来,那么就用到我们常用的iText框架了,所... 目录引言iText 核心概念C# 代码示例步骤 1: 确保已安装 iText步骤 2: C# 代码程

Pandas处理缺失数据的方式汇总

《Pandas处理缺失数据的方式汇总》许多教程中的数据与现实世界中的数据有很大不同,现实世界中的数据很少是干净且同质的,本文我们将讨论处理缺失数据的一些常规注意事项,了解Pandas如何表示缺失数据,... 目录缺失数据约定的权衡Pandas 中的缺失数据None 作为哨兵值NaN:缺失的数值数据Panda

C++中处理文本数据char与string的终极对比指南

《C++中处理文本数据char与string的终极对比指南》在C++编程中char和string是两种用于处理字符数据的类型,但它们在使用方式和功能上有显著的不同,:本文主要介绍C++中处理文本数... 目录1. 基本定义与本质2. 内存管理3. 操作与功能4. 性能特点5. 使用场景6. 相互转换核心区别

python库pydantic数据验证和设置管理库的用途

《python库pydantic数据验证和设置管理库的用途》pydantic是一个用于数据验证和设置管理的Python库,它主要利用Python类型注解来定义数据模型的结构和验证规则,本文给大家介绍p... 目录主要特点和用途:Field数值验证参数总结pydantic 是一个让你能够 confidentl

JAVA实现亿级千万级数据顺序导出的示例代码

《JAVA实现亿级千万级数据顺序导出的示例代码》本文主要介绍了JAVA实现亿级千万级数据顺序导出的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 前提:主要考虑控制内存占用空间,避免出现同时导出,导致主程序OOM问题。实现思路:A.启用线程池

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本