百度DDParser的依存分析

2023-12-27 03:48
文章标签 分析 百度 依存 ddparser

本文主要是介绍百度DDParser的依存分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

# 安装

  安装前没注意,安装了paddlepaddle最新版2.0.1,结果引发了一些错误,好在不是严重的问题,修改后依旧可以使用

  1. 安装百度深度学习框架paddlepaddle飞桨(版本2.0.1

python -m pip install paddlepaddle -i https://mirror.baidu.com/pypi/simple

  2. 安装DDParser(版本0.1.2

pip install ddparser

  3.  报错 [链接]

RuntimeError: paddle-ernie requires paddle 1.7+, got 2.0.1

  4. 打开C:\Anaconda3\lib\site-packages\ddparser\ernie\__init__.py,修改如下

'''原来'''
# paddle_version = [int(i) for i in paddle.__version__.split('.')]
# if paddle_version[1] < 7:'''修改后'''
paddle_version = [i for i in paddle.__version__.split('.')]
if 10 * int(paddle_version[0]) +int(paddle_version[1]) < 17:

  5. 初次运行会下载模型,放置在C:\Anaconda3\Lib\site-packages\ddparser\model_files

  6. 运行 ddp.parse("百度是一家高科技公司") 报错

AttributeError: module 'paddle.fluid.layers' has no attribute 'index_select'

7. 报错原因:从1.x版本升级为2.0版本,API有变动 [飞桨框架API映射表]

    打开C:\Anaconda3\lib\site-packages\ddparser\parser\nets\bilstm.py,修改成变动后的API(注:dim参数名改为axis

8. 同样的问题还包括

C:\Anaconda3\lib\site-packages\ddparser\parser\nets\nn.py

AttributeError: module 'paddle.fluid.layers' has no attribute 'arange'

# 说明

  分词器:百度词法分析工具 LAC(实现中文分词、词性标注、专名识别等功能),支持使用其他工具的分词结果进行依存分析

  附录1 pos:词性和专名类别标签集合

  附录2 dep:依存句法分析标注关系集合(DuCTB1.0是百度构建的中文依存句法树库

# 操作

from ddparser import DDParserddp = DDParser()results = ddp.parse("清华大学研究核能的教授有哪些")>>> [{'word': ['清华大学', '研究', '核能', '的', '教授', '有', '哪些'],   'head': [5, 5, 2, 2, 6, 0, 6],  'deprel': ['ATT', 'ATT', 'VOB', 'MT', 'SBV', 'HED', 'VOB']}]

    为了将结果可视化,这里用DataFrame输出,数据格式按照 CoNLL-X format(注:CoNLL-U是CoNLL-X的扩展版

CoNLL-U 格式

① CoNLL 格式是一种偏向于“机读"的形式。在CONLL格式中,每个词语占一行,无值列用下划线'_'代替,列的分隔符为制表符'\t',行的分隔符为换行符'\n';句子与句子之间用空行分隔。

② GitHub Issue:ddp.parse的结果可以直接输出CoNLL-X格式吗 

③ 另外可以试一下paddlehub ,里面对ddparser做了封装,提供可视化表示。

col = ('FROM','LEMMA','CPOSTAG','POSTAG','FEATS','HEAD','DEPREL','PROB','PDEPREL')
row = []for res in results:for i in range(len(res['word'])):data = {"FROM":res['word'][i], "LEMMA":res['word'][i], "HEAD":res['head'][i], "DEPREL":res['deprel'][i]}row.append(data)df = pd.DataFrame(row,columns=col)
df.fillna('_',inplace = True) # 缺省值
df.index = df.index + 1  # 把索引号加1视为ID
print(df)

    Windows可以用DependencyViewer加载CoNLL格式的txt文件,其他可以用web端的conllu.js

    📍 UD提供的可视化工具:Visualisation 

    📍 HanLP进一步封装:Dependency Tree Visualization

# 扩展

    在DDParser()中指定参数prob和use_pos,使用prob可以指定输出概率,使用use_pos可以输出词性标签

from ddparser import DDParser
ddp = DDParser(prob=True, use_pos=True)
ddp.parse(["百度是一家高科技公司"])
>>> [{'word': ['百度', '是', '一家', '高科技', '公司'], 'postag': ['ORG', 'v', 'm', 'n', 'n'], 'head': [2, 0, 5, 5, 2], 'deprel': ['SBV', 'HED', 'ATT', 'ATT', 'VOB'], 'prob': [1.0, 1.0, 1.0, 1.0, 1.0]}]

     在class DDParser中指定参数buckets=True可以在数据集长度不均时处理速度更快

from ddparser import DDParser
ddp = DDParser(buckets=True)

    在已分词情况下(比如希望使用其他工具的分词结果),通过调用parse_seg()方法,可以进行依存句法树分析

ddp = DDParser()
ddp.parse_seg([['百', '度', '是', '一家', '高科技', '公司'], ['他', '送', ' 了', '一本', '书']])
>>> [{'word': ['百', '度', '是', '一家', '高科技', '公司'], 'head': [2, 3, 0, 6, 6, 3], 'deprel': ['ATT', 'SBV', 'HED', 'ATT', 'ATT', 'VOB']}, {'word': ['他', '送', '了', '一本', '书'], 'head': [2, 0, 2, 5, 2], 'deprel': ['SBV', 'HED', 'MT', 'ATT', 'VOB']}]

    更多请查看 GitHub BaiDu DDParser

# 工具学习系列

  • 哈工大LTP的依存分析
  • 百度DDParser的依存分析
  • HanLP的依存分析
  • Spacy的依存分析

词性标注集pos/tag依存句法分析标注集dep语义依存分析标注集sdp
LTP863词性标注集BH-DEPBH-SDP
SpaCy基于Google Universal POS Tag set扩展采用了 ClearNLP 的依存分析标签-
DDParser百度构建的标注集DuCTB-
HanLPCTB、PKU、863、UDSD、UDSemEval16、DM、PAS、PSD
stanford corenlpPenn Chinese Treebank Tag Set(CTB)没找到说明采用的标注集 [链接]-
jieba和 ictclas 兼容的标记法不支持不支持

# 参考

    2020.11-依存句法树baidu-DDParser工具使用

# 其他

1)pandas似乎要在ddparser前导入,否则会报错

import pandas as pd
from ddparser import DDParser

BUG0:AttributeError: type object ‘Callable‘ has no attribute ‘_abc_registry‘  [解决方案]

BUG1:‘WindowsPath‘ object has no attribute ‘read_text‘ [解决方案]

2)百度LAC分词

from LAC import LAC
lac = LAC(mode='seg') # mode选项:lac(默认)与seg,lac包含词性 seg_result = lac.run(text)

这篇关于百度DDParser的依存分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/541804

相关文章

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

MyBatis Plus大数据量查询慢原因分析及解决

《MyBatisPlus大数据量查询慢原因分析及解决》大数据量查询慢常因全表扫描、分页不当、索引缺失、内存占用高及ORM开销,优化措施包括分页查询、流式读取、SQL优化、批处理、多数据源、结果集二次... 目录大数据量查询慢的常见原因优化方案高级方案配置调优监控与诊断总结大数据量查询慢的常见原因MyBAT

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe

Java中最全最基础的IO流概述和简介案例分析

《Java中最全最基础的IO流概述和简介案例分析》JavaIO流用于程序与外部设备的数据交互,分为字节流(InputStream/OutputStream)和字符流(Reader/Writer),处理... 目录IO流简介IO是什么应用场景IO流的分类流的超类类型字节文件流应用简介核心API文件输出流应用文

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

Android 缓存日志Logcat导出与分析最佳实践

《Android缓存日志Logcat导出与分析最佳实践》本文全面介绍AndroidLogcat缓存日志的导出与分析方法,涵盖按进程、缓冲区类型及日志级别过滤,自动化工具使用,常见问题解决方案和最佳实... 目录android 缓存日志(Logcat)导出与分析全攻略为什么要导出缓存日志?按需过滤导出1. 按

Linux中的HTTPS协议原理分析

《Linux中的HTTPS协议原理分析》文章解释了HTTPS的必要性:HTTP明文传输易被篡改和劫持,HTTPS通过非对称加密协商对称密钥、CA证书认证和混合加密机制,有效防范中间人攻击,保障通信安全... 目录一、什么是加密和解密?二、为什么需要加密?三、常见的加密方式3.1 对称加密3.2非对称加密四、