工具系列:TimeGPT_(3)处理假期和特殊日期

2023-12-27 00:20

本文主要是介绍工具系列:TimeGPT_(3)处理假期和特殊日期,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

日历变量和特殊日期是预测应用中最常见的外生变量类型之一。它们为时间序列的当前状态提供了额外的上下文信息,特别是对于基于窗口的模型(如TimeGPT-1)而言。这些变量通常包括添加每个观测的月份、周数、日期或小时数的信息。例如,在高频小时数据中,提供年份的当前月份比输入窗口中有限的历史信息更有意义,可以改善预测结果。

在本教程中,我们将展示如何使用date_features函数自动向数据集中添加日历变量。

from nixtlats.utils import colab_badge

colab_badge('docs/tutorials/2_holidays')
# 导入load_dotenv函数,用于加载.env文件中的环境变量
from fastcore.test import test_eq, test_fail, test_warns
from dotenv import load_dotenv
load_dotenv()
True

import pandas as pd
from nixtlats import TimeGPT
/home/ubuntu/miniconda/envs/nixtlats/lib/python3.11/site-packages/statsforecast/core.py:25: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.htmlfrom tqdm.autonotebook import tqdm
# 创建一个TimeGPT对象,传入token参数,如果没有传入则默认使用环境变量中的TIMEGPT_TOKEN
timegpt = TimeGPT(token='my_token_provided_by_nixtla')
# 创建一个TimeGPT对象
timegpt = TimeGPT()

鉴于日历变量的主导使用,我们将常见日历变量的自动创建作为预处理步骤包含在预测方法中。要自动添加日历变量,请使用“date_features”参数。

# 从指定的URL读取CSV文件,并将其存储在名为pltr_df的数据框中
pltr_df = pd.read_csv('https://raw.githubusercontent.com/Nixtla/transfer-learning-time-series/main/datasets/openbb/pltr.csv')
# 导入所需的模块和函数已在代码中完成,无需再次导入# 使用timegpt模块的forecast函数进行时间序列预测,并将结果赋值给fcst_pltr_calendar_df变量
# 参数说明:
# - df:传入的数据框,这里使用pltr_df的最后28个数据作为输入数据
# - h:预测的时间步长,这里预测未来14个时间步
# - freq:时间序列的频率,这里使用工作日频率(Business Day)
# - time_col:时间列的名称,这里使用'date'作为时间列
# - target_col:目标列的名称,这里使用'Close'作为目标列
# - date_features:需要使用的日期特征,这里使用'month'和'weekday'作为日期特征
fcst_pltr_calendar_df = timegpt.forecast(df=pltr_df.tail(2 * 14), h=14, freq='B',time_col='date', target_col='Close',date_features=['month','weekday']
)# 输出预测结果的前几行
fcst_pltr_calendar_df.head()
INFO:nixtlats.timegpt:Validating inputs...
INFO:nixtlats.timegpt:Preprocessing dataframes...
WARNING:nixtlats.timegpt:The specified horizon "h" exceeds the model horizon. This may lead to less accurate forecasts. Please consider using a smaller horizon.
INFO:nixtlats.timegpt:Calling Forecast Endpoint...
dateTimeGPT
02023-09-2514.677374
12023-09-2614.825757
22023-09-2715.126798
32023-09-2814.398899
42023-09-2914.387407
# 导入timegpt模块中的plot函数# 使用plot函数绘制图表,传入以下参数:
# - pltr_df: 数据框,包含要绘制的数据
# - fcst_pltr_calendar_df: 数据框,包含要绘制的预测数据
# - id_col: 字符串,指定数据框中表示系列ID的列名
# - time_col: 字符串,指定数据框中表示时间的列名
# - target_col: 字符串,指定数据框中表示目标变量的列名
# - max_insample_length: 整数,指定用于训练模型的最大样本数量
timegpt.plot(pltr_df, fcst_pltr_calendar_df, id_col='series_id',time_col='date',target_col='Close',max_insample_length=90,
)

我们还可以绘制每个日期特征的重要性。

timegpt.weights_x.plot.barh(x='features', y='weights', figsize=(10, 10))
<Axes: ylabel='features'>

您还可以使用CountryHolidays类添加国家假日。

# 导入nixtlats.date_features模块中的CountryHolidays类from nixtlats.date_features import CountryHolidays
# 导入所需模块和函数# 使用timegpt.forecast函数进行时间序列预测,将预测结果保存在fcst_pltr_calendar_df中
# 参数df为输入的数据框pltr_df,h为预测的时间步数14,freq为频率为工作日'B',time_col为时间列'date',target_col为目标列'Close',date_features为日期特征,这里使用了CountryHolidays函数来指定美国的假日
fcst_pltr_calendar_df = timegpt.forecast(df=pltr_df, h=14, freq='B',time_col='date', target_col='Close',date_features=[CountryHolidays(['US'])]
)# 使用timegpt.weights_x.plot.barh函数绘制水平条形图,x轴为特征'features',y轴为权重'weights',图像大小为(10, 10)
timegpt.weights_x.plot.barh(x='features', y='weights', figsize=(10, 10))
INFO:nixtlats.timegpt:Validating inputs...
INFO:nixtlats.timegpt:Preprocessing dataframes...
WARNING:nixtlats.timegpt:The specified horizon "h" exceeds the model horizon. This may lead to less accurate forecasts. Please consider using a smaller horizon.
INFO:nixtlats.timegpt:Calling Forecast Endpoint...<Axes: ylabel='features'>

以下是date_features参数的详细说明:

  • date_features(bool或str列表或可调用对象):此参数指定要考虑的日期属性。

    • 如果设置为True,模型将自动添加与给定数据框(df)的频率相关的最常见日期特征。对于每日频率,这可能包括星期几、月份和年份等特征。
    • 如果提供了一个字符串列表,它将考虑那些特定的日期属性。例如,date_features=['weekday', 'month']将只添加星期几和月份作为特征。
    • 如果提供了一个可调用对象,它应该是一个以日期为输入并返回所需特征的函数。这样可以灵活地计算自定义日期特征。
  • date_features_to_one_hot(bool或str列表):确定日期特征后,可能希望对其进行独热编码,特别是如果它们是分类的(例如星期几)。独热编码将这些分类特征转换为二进制矩阵,使它们更适合许多机器学习算法。

    • 如果date_features=True,则默认情况下,所有计算得到的日期特征将进行独热编码。
    • 如果提供了一个字符串列表,只有那些特定的日期特征将进行独热编码。

通过利用date_featuresdate_features_to_one_hot参数,可以有效地将日期属性的时间效应纳入到预测模型中,从而提高其准确性和可解释性。

这篇关于工具系列:TimeGPT_(3)处理假期和特殊日期的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/541294

相关文章

基于Python开发Windows自动更新控制工具

《基于Python开发Windows自动更新控制工具》在当今数字化时代,操作系统更新已成为计算机维护的重要组成部分,本文介绍一款基于Python和PyQt5的Windows自动更新控制工具,有需要的可... 目录设计原理与技术实现系统架构概述数学建模工具界面完整代码实现技术深度分析多层级控制理论服务层控制注

解决docker目录内存不足扩容处理方案

《解决docker目录内存不足扩容处理方案》文章介绍了Docker存储目录迁移方法:因系统盘空间不足,需将Docker数据迁移到更大磁盘(如/home/docker),通过修改daemon.json配... 目录1、查看服务器所有磁盘的使用情况2、查看docker镜像和容器存储目录的空间大小3、停止dock

5 种使用Python自动化处理PDF的实用方法介绍

《5种使用Python自动化处理PDF的实用方法介绍》自动化处理PDF文件已成为减少重复工作、提升工作效率的重要手段,本文将介绍五种实用方法,从内置工具到专业库,帮助你在Python中实现PDF任务... 目录使用内置库(os、subprocess)调用外部工具使用 PyPDF2 进行基本 PDF 操作使用

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺

Python异常处理之避免try-except滥用的3个核心原则

《Python异常处理之避免try-except滥用的3个核心原则》在Python开发中,异常处理是保证程序健壮性的关键机制,本文结合真实案例与Python核心机制,提炼出避免异常滥用的三大原则,有需... 目录一、精准打击:只捕获可预见的异常类型1.1 通用异常捕获的陷阱1.2 精准捕获的实践方案1.3

Pandas处理缺失数据的方式汇总

《Pandas处理缺失数据的方式汇总》许多教程中的数据与现实世界中的数据有很大不同,现实世界中的数据很少是干净且同质的,本文我们将讨论处理缺失数据的一些常规注意事项,了解Pandas如何表示缺失数据,... 目录缺失数据约定的权衡Pandas 中的缺失数据None 作为哨兵值NaN:缺失的数值数据Panda

C++中处理文本数据char与string的终极对比指南

《C++中处理文本数据char与string的终极对比指南》在C++编程中char和string是两种用于处理字符数据的类型,但它们在使用方式和功能上有显著的不同,:本文主要介绍C++中处理文本数... 目录1. 基本定义与本质2. 内存管理3. 操作与功能4. 性能特点5. 使用场景6. 相互转换核心区别

Python动态处理文件编码的完整指南

《Python动态处理文件编码的完整指南》在Python文件处理的高级应用中,我们经常会遇到需要动态处理文件编码的场景,本文将深入探讨Python中动态处理文件编码的技术,有需要的小伙伴可以了解下... 目录引言一、理解python的文件编码体系1.1 Python的IO层次结构1.2 编码问题的常见场景二

基于Go语言开发一个 IP 归属地查询接口工具

《基于Go语言开发一个IP归属地查询接口工具》在日常开发中,IP地址归属地查询是一个常见需求,本文将带大家使用Go语言快速开发一个IP归属地查询接口服务,有需要的小伙伴可以了解下... 目录功能目标技术栈项目结构核心代码(main.go)使用方法扩展功能总结在日常开发中,IP 地址归属地查询是一个常见需求:

Python函数的基本用法、返回值特性、全局变量修改及异常处理技巧

《Python函数的基本用法、返回值特性、全局变量修改及异常处理技巧》本文将通过实际代码示例,深入讲解Python函数的基本用法、返回值特性、全局变量修改以及异常处理技巧,感兴趣的朋友跟随小编一起看看... 目录一、python函数定义与调用1.1 基本函数定义1.2 函数调用二、函数返回值详解2.1 有返