工具系列:TimeGPT_(3)处理假期和特殊日期

2023-12-27 00:20

本文主要是介绍工具系列:TimeGPT_(3)处理假期和特殊日期,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

日历变量和特殊日期是预测应用中最常见的外生变量类型之一。它们为时间序列的当前状态提供了额外的上下文信息,特别是对于基于窗口的模型(如TimeGPT-1)而言。这些变量通常包括添加每个观测的月份、周数、日期或小时数的信息。例如,在高频小时数据中,提供年份的当前月份比输入窗口中有限的历史信息更有意义,可以改善预测结果。

在本教程中,我们将展示如何使用date_features函数自动向数据集中添加日历变量。

from nixtlats.utils import colab_badge

colab_badge('docs/tutorials/2_holidays')
# 导入load_dotenv函数,用于加载.env文件中的环境变量
from fastcore.test import test_eq, test_fail, test_warns
from dotenv import load_dotenv
load_dotenv()
True

import pandas as pd
from nixtlats import TimeGPT
/home/ubuntu/miniconda/envs/nixtlats/lib/python3.11/site-packages/statsforecast/core.py:25: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.htmlfrom tqdm.autonotebook import tqdm
# 创建一个TimeGPT对象,传入token参数,如果没有传入则默认使用环境变量中的TIMEGPT_TOKEN
timegpt = TimeGPT(token='my_token_provided_by_nixtla')
# 创建一个TimeGPT对象
timegpt = TimeGPT()

鉴于日历变量的主导使用,我们将常见日历变量的自动创建作为预处理步骤包含在预测方法中。要自动添加日历变量,请使用“date_features”参数。

# 从指定的URL读取CSV文件,并将其存储在名为pltr_df的数据框中
pltr_df = pd.read_csv('https://raw.githubusercontent.com/Nixtla/transfer-learning-time-series/main/datasets/openbb/pltr.csv')
# 导入所需的模块和函数已在代码中完成,无需再次导入# 使用timegpt模块的forecast函数进行时间序列预测,并将结果赋值给fcst_pltr_calendar_df变量
# 参数说明:
# - df:传入的数据框,这里使用pltr_df的最后28个数据作为输入数据
# - h:预测的时间步长,这里预测未来14个时间步
# - freq:时间序列的频率,这里使用工作日频率(Business Day)
# - time_col:时间列的名称,这里使用'date'作为时间列
# - target_col:目标列的名称,这里使用'Close'作为目标列
# - date_features:需要使用的日期特征,这里使用'month'和'weekday'作为日期特征
fcst_pltr_calendar_df = timegpt.forecast(df=pltr_df.tail(2 * 14), h=14, freq='B',time_col='date', target_col='Close',date_features=['month','weekday']
)# 输出预测结果的前几行
fcst_pltr_calendar_df.head()
INFO:nixtlats.timegpt:Validating inputs...
INFO:nixtlats.timegpt:Preprocessing dataframes...
WARNING:nixtlats.timegpt:The specified horizon "h" exceeds the model horizon. This may lead to less accurate forecasts. Please consider using a smaller horizon.
INFO:nixtlats.timegpt:Calling Forecast Endpoint...
dateTimeGPT
02023-09-2514.677374
12023-09-2614.825757
22023-09-2715.126798
32023-09-2814.398899
42023-09-2914.387407
# 导入timegpt模块中的plot函数# 使用plot函数绘制图表,传入以下参数:
# - pltr_df: 数据框,包含要绘制的数据
# - fcst_pltr_calendar_df: 数据框,包含要绘制的预测数据
# - id_col: 字符串,指定数据框中表示系列ID的列名
# - time_col: 字符串,指定数据框中表示时间的列名
# - target_col: 字符串,指定数据框中表示目标变量的列名
# - max_insample_length: 整数,指定用于训练模型的最大样本数量
timegpt.plot(pltr_df, fcst_pltr_calendar_df, id_col='series_id',time_col='date',target_col='Close',max_insample_length=90,
)

我们还可以绘制每个日期特征的重要性。

timegpt.weights_x.plot.barh(x='features', y='weights', figsize=(10, 10))
<Axes: ylabel='features'>

您还可以使用CountryHolidays类添加国家假日。

# 导入nixtlats.date_features模块中的CountryHolidays类from nixtlats.date_features import CountryHolidays
# 导入所需模块和函数# 使用timegpt.forecast函数进行时间序列预测,将预测结果保存在fcst_pltr_calendar_df中
# 参数df为输入的数据框pltr_df,h为预测的时间步数14,freq为频率为工作日'B',time_col为时间列'date',target_col为目标列'Close',date_features为日期特征,这里使用了CountryHolidays函数来指定美国的假日
fcst_pltr_calendar_df = timegpt.forecast(df=pltr_df, h=14, freq='B',time_col='date', target_col='Close',date_features=[CountryHolidays(['US'])]
)# 使用timegpt.weights_x.plot.barh函数绘制水平条形图,x轴为特征'features',y轴为权重'weights',图像大小为(10, 10)
timegpt.weights_x.plot.barh(x='features', y='weights', figsize=(10, 10))
INFO:nixtlats.timegpt:Validating inputs...
INFO:nixtlats.timegpt:Preprocessing dataframes...
WARNING:nixtlats.timegpt:The specified horizon "h" exceeds the model horizon. This may lead to less accurate forecasts. Please consider using a smaller horizon.
INFO:nixtlats.timegpt:Calling Forecast Endpoint...<Axes: ylabel='features'>

以下是date_features参数的详细说明:

  • date_features(bool或str列表或可调用对象):此参数指定要考虑的日期属性。

    • 如果设置为True,模型将自动添加与给定数据框(df)的频率相关的最常见日期特征。对于每日频率,这可能包括星期几、月份和年份等特征。
    • 如果提供了一个字符串列表,它将考虑那些特定的日期属性。例如,date_features=['weekday', 'month']将只添加星期几和月份作为特征。
    • 如果提供了一个可调用对象,它应该是一个以日期为输入并返回所需特征的函数。这样可以灵活地计算自定义日期特征。
  • date_features_to_one_hot(bool或str列表):确定日期特征后,可能希望对其进行独热编码,特别是如果它们是分类的(例如星期几)。独热编码将这些分类特征转换为二进制矩阵,使它们更适合许多机器学习算法。

    • 如果date_features=True,则默认情况下,所有计算得到的日期特征将进行独热编码。
    • 如果提供了一个字符串列表,只有那些特定的日期特征将进行独热编码。

通过利用date_featuresdate_features_to_one_hot参数,可以有效地将日期属性的时间效应纳入到预测模型中,从而提高其准确性和可解释性。

这篇关于工具系列:TimeGPT_(3)处理假期和特殊日期的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/541294

相关文章

Java使用Thumbnailator库实现图片处理与压缩功能

《Java使用Thumbnailator库实现图片处理与压缩功能》Thumbnailator是高性能Java图像处理库,支持缩放、旋转、水印添加、裁剪及格式转换,提供易用API和性能优化,适合Web应... 目录1. 图片处理库Thumbnailator介绍2. 基本和指定大小图片缩放功能2.1 图片缩放的

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON:

Spring Boot 中的默认异常处理机制及执行流程

《SpringBoot中的默认异常处理机制及执行流程》SpringBoot内置BasicErrorController,自动处理异常并生成HTML/JSON响应,支持自定义错误路径、配置及扩展,如... 目录Spring Boot 异常处理机制详解默认错误页面功能自动异常转换机制错误属性配置选项默认错误处理

SpringBoot 异常处理/自定义格式校验的问题实例详解

《SpringBoot异常处理/自定义格式校验的问题实例详解》文章探讨SpringBoot中自定义注解校验问题,区分参数级与类级约束触发的异常类型,建议通过@RestControllerAdvice... 目录1. 问题简要描述2. 异常触发1) 参数级别约束2) 类级别约束3. 异常处理1) 字段级别约束

基于Python实现简易视频剪辑工具

《基于Python实现简易视频剪辑工具》这篇文章主要为大家详细介绍了如何用Python打造一个功能完备的简易视频剪辑工具,包括视频文件导入与格式转换,基础剪辑操作,音频处理等功能,感兴趣的小伙伴可以了... 目录一、技术选型与环境搭建二、核心功能模块实现1. 视频基础操作2. 音频处理3. 特效与转场三、高

基于Python开发一个图像水印批量添加工具

《基于Python开发一个图像水印批量添加工具》在当今数字化内容爆炸式增长的时代,图像版权保护已成为创作者和企业的核心需求,本方案将详细介绍一个基于PythonPIL库的工业级图像水印解决方案,有需要... 目录一、系统架构设计1.1 整体处理流程1.2 类结构设计(扩展版本)二、核心算法深入解析2.1 自

Java堆转储文件之1.6G大文件处理完整指南

《Java堆转储文件之1.6G大文件处理完整指南》堆转储文件是优化、分析内存消耗的重要工具,:本文主要介绍Java堆转储文件之1.6G大文件处理的相关资料,文中通过代码介绍的非常详细,需要的朋友可... 目录前言文件为什么这么大?如何处理这个文件?分析文件内容(推荐)删除文件(如果不需要)查看错误来源如何避

使用Python构建一个高效的日志处理系统

《使用Python构建一个高效的日志处理系统》这篇文章主要为大家详细讲解了如何使用Python开发一个专业的日志分析工具,能够自动化处理、分析和可视化各类日志文件,大幅提升运维效率,需要的可以了解下... 目录环境准备工具功能概述完整代码实现代码深度解析1. 类设计与初始化2. 日志解析核心逻辑3. 文件处

Java docx4j高效处理Word文档的实战指南

《Javadocx4j高效处理Word文档的实战指南》对于需要在Java应用程序中生成、修改或处理Word文档的开发者来说,docx4j是一个强大而专业的选择,下面我们就来看看docx4j的具体使用... 目录引言一、环境准备与基础配置1.1 Maven依赖配置1.2 初始化测试类二、增强版文档操作示例2.

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口