树莓派,opencv,Picamera2利用舵机云台追踪人脸(PID控制)

2023-12-26 18:01

本文主要是介绍树莓派,opencv,Picamera2利用舵机云台追踪人脸(PID控制),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、需要准备的硬件

  1. Raspiberry Pi 4b
  2. 两个SG90 180度舵机(注意舵机的角度,最好是180度且带限位的,切勿选360度舵机)
  3. 二自由度舵机云台(如下图)
  4. Raspiberry CSI 摄像头
    组装后的效果:
    组装后的效果

二、项目目标

追踪人脸:
当人脸移动时,摄像头通过控制两个伺服电机(分别是偏航和俯仰)把该人脸放到视界的中心位置,本文采用了PID控制伺服电机

三、具体步骤

3.1 下载用于人脸识别的级联分类器

下载级联分类器“haarcascade_frontalface_default.xml”,下载地址:haarcascade_frontalface_default.xml
下载完成后将其与后面的所有文件放到同一目录中。

3.2人脸追踪代码

  1. 创建文件“face_tracking_PID.py” ,代码如下:
#face_tracking_PID.py
#-*- coding: UTF-8 -*-	
# 调用必需库
from multiprocessing import Manager
from multiprocessing import Process
from objcenter import ObjCenter
from pid import PID
from servo import Servo
import argparse
import signal
import time
import sys
import cv2
from picamera2 import Picamera2# 定义舵机
pan=Servo(pin=19)
tilt=Servo(pin=16)#定义图像尺寸
dispW=1280
dispH=720# 键盘终止函数
def signal_handler(sig, frame):# 输出状态信息print("[INFO] You pressed `ctrl + c`! Exiting...")# 关闭舵机pan.stop()tilt.stop()# 退出sys.exit()def obj_center(args, objX, objY, centerX, centerY):# ctrl+c退出进程signal.signal(signal.SIGINT, signal_handler)# 启动视频流并缓冲print("[INFO] waiting for camera to warm up...")cv2.startWindowThread()picam2 = Picamera2()preview_config = picam2.create_preview_configuration(main={"size": (dispW, dispH),"format":"RGB888"})picam2.configure(preview_config)picam2.start()time.sleep(2.0)# 初始化人脸中心探测器obj = ObjCenter(args["cascade"])# 进入循环while True:# 从视频流抓取图像并旋转frame= picam2.capture_array()frame = cv2.flip(frame, 1)# 找到图像中心(H, W) = frame.shape[:2]centerX.value = W // 2centerY.value = H // 2#draw a point in the center of framecv2.circle(frame, (centerX.value, centerY.value), 5, (0, 0, 255), -1)# 找到人脸中心objectLoc = obj.update(frame, (centerX.value, centerY.value))((objX.value, objY.value), rect) = objectLocprint("objx.value", objX.value)print("objy.value", objY.value)# 绘制人脸外界矩形if rect is not None:(x, y, w, h) = rectcv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)fX = int(x + (w / 2.0))fY = int(y + (h / 2.0))cv2.circle(frame, (fX, fY), 5, (0, 0, 255), -1)# 在人脸中心和视窗中心画一条连线cv2.line(frame, (centerX.value, centerY.value),(fX, fY), (0, 255, 0), 2)# 显示图像cv2.imshow("Pan-Tilt Face Tracking", frame)cv2.waitKey(1)def pid_process(output, p, i, d, objCoord, centerCoord):# ctrl+c退出进程signal.signal(signal.SIGINT, signal_handler)# 创建一个PID类的对象并初始化p = PID(p.value, i.value, d.value)p.initialize()# 进入循环while True:# 计算误差error = centerCoord.value - objCoord.value# 更新输出值,当error小于50时,误差设为0,以避免云台不停运行。if abs(error) < 50:error = 0output.value = p.update(error)def set_servos(panAngle, tiltAngle):# ctrl+c退出进程signal.signal(signal.SIGINT, signal_handler)#进入循环while True:# 偏角变号yaw = -1 * panAngle.valuepitch = -1 * tiltAngle.value# 设置舵机角度。pan.set_angle(yaw)tilt.set_angle(pitch)# 启动主程序
if __name__ == "__main__":# 建立语法分析器ap = argparse.ArgumentParser()ap.add_argument("-c", "--cascade", type=str, required=True,help="path to input Haar cascade for face detection")args = vars(ap.parse_args())# 启动多进程变量管理with Manager() as manager: #相当于manager=Manager(),with as 语句操作上下文管理器(context manager),它能够帮助我们自动分配并且释放资源。# 舵机角度置零pan.set_angle(0)tilt.set_angle(0)# 为图像中心坐标赋初值centerX = manager.Value("i", 0) #"i"即为整型integercenterY = manager.Value("i", 0)# 为人脸中心坐标赋初值objX = manager.Value("i", 0)objY = manager.Value("i", 0)# panAngle和tiltAngle分别是两个舵机的PID控制输出量	    panAngle = manager.Value("i", 0)tiltAngle = manager.Value("i", 0)# 设置一级舵机的PID参数panP = manager.Value("f", 0.015)  # "f"即为浮点型floatpanI = manager.Value("f", 0.01)panD = manager.Value("f", 0.0008)# 设置二级舵机的PID参数tiltP = manager.Value("f", 0.025)tiltI = manager.Value("f", 0.01)tiltD = manager.Value("f", 0.008)# 创建4个独立进程# 1. objectCenter  - 探测人脸# 2. panning       - 对一级舵机进行PID控制,控制偏航角# 3. tilting       - 对二级舵机进行PID控制,控制俯仰角# 4. setServos     - 根据PID控制的输出驱动舵机processObjectCenter = Process(target=obj_center,args=(args, objX, objY, centerX, centerY))processPanning = Process(target=pid_process,args=(panAngle, panP, panI, panD, objX, centerX))processTilting = Process(target=pid_process,args=(tiltAngle, tiltP, tiltI, tiltD, objY, centerY))processSetServos = Process(target=set_servos, args=(panAngle, tiltAngle))# 开启4个进程processObjectCenter.start()processPanning.start()processTilting.start()processSetServos.start()# 添加4个进程processObjectCenter.join()processPanning.join()processTilting.join()processSetServos.join()
  1. 创建文件“objcenter.py”,代码如下:
#objcenter.py
#-*- coding: UTF-8 -*-
# 调用必需库
import cv2class ObjCenter:def __init__(self, haarPath):# 加载人脸探测器self.detector = cv2.CascadeClassifier(haarPath)def update(self, frame, frameCenter):# 将图像转为灰度图gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)# 探测图像中的所有人脸rects = self.detector.detectMultiScale(gray, scaleFactor=1.05,minNeighbors=9, minSize=(30, 30),flags=cv2.CASCADE_SCALE_IMAGE)# 是否检测到人脸if len(rects) > 0:# 获取矩形的参数# x,y为左上角点坐标,w,h为宽度和高度# 计算图像中心(x, y, w, h) = rects[0]faceX = int(x + (w / 2.0))faceY = int(y + (h / 2.0))# 返回人脸中心return ((faceX, faceY), rects[0])# 如果没有识别到人脸,返回图像中心return (frameCenter, None)
  1. 创建“pid.py”,代码如下:
#pid.py
#-*- coding: UTF-8 -*-
# 调用必需库
import timeclass PID:def __init__(self, kP=1, kI=0, kD=0):# 初始化参数self.kP = kPself.kI = kIself.kD = kDdef initialize(self):# 初始化当前时间和上一次计算的时间self.currTime = time.time()self.prevTime = self.currTime# 初始化上一次计算的误差self.prevError = 0# 初始化误差的比例值,积分值和微分值self.cP = 0self.cI = 0self.cD = 0def update(self, error, sleep=0.2):# 暂停time.sleep(sleep)# 获取当前时间并计算时间差self.currTime = time.time()deltaTime = self.currTime - self.prevTime# 计算误差的微分deltaError = error - self.prevError# 比例项self.cP = error# 积分项self.cI += error * deltaTime# 微分项self.cD = (deltaError / deltaTime) if deltaTime > 0 else 0# 保存时间和误差为下次更新做准备self.prevTime = self.currTimeself.prevError = error# 返回输出值return sum([self.kP * self.cP,self.kI * self.cI,self.kD * self.cD])
  1. 上述代码中的from servo import Servo导入servo,这个库是没有的,我们要手动创建这个库,在object_tracking.py所在的目录下新建servo.py文件,复制下面的代码到文件中
#!/usr/bin/env python3
import pigpio
from time import sleep
# Start the pigpiod daemon
import subprocess
result = None
status = 1
for x in range(3):p = subprocess.Popen('sudo pigpiod', shell=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT)result = p.stdout.read().decode('utf-8')status = p.poll()if status == 0:breaksleep(0.2)
if status != 0:print(status, result)
'''
> Use the DMA PWM of the pigpio library to drive the servo
> Map the servo angle (0 ~ 180 degree) to (-90 ~ 90 degree)'''class Servo():MAX_PW = 1250  # 0.5/20*100MIN_PW = 250 # 2.5/20*100_freq = 50 # 50 Hz, 20msdef __init__(self, pin, min_angle=-90, max_angle=90):self.pi = pigpio.pi()self.pin = pin self.pi.set_PWM_frequency(self.pin, self._freq)self.pi.set_PWM_range(self.pin, 10000)      self.angle = 0self.max_angle = max_angleself.min_angle = min_angleself.pi.set_PWM_dutycycle(self.pin, 0)def set_angle(self, angle):if angle > self.max_angle:angle = self.max_angleelif angle < self.min_angle:angle = self.min_angleself.angle = angleduty = self.map(angle, -90, 90, 250, 1250)self.pi.set_PWM_dutycycle(self.pin, duty)def get_angle(self):return self.angledef stop(self):self.pi.set_PWM_dutycycle(self.pin, 0)self.pi.stop()# will be called automatically when the object is deleted# def __del__(self):#     passdef map(self, x, in_min, in_max, out_min, out_max):return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_minif __name__ =='__main__':from vilib import Vilib# Vilib.camera_start(vflip=True,hflip=True) # Vilib.display(local=True,web=True)pan = Servo(pin=13, max_angle=90, min_angle=-90)tilt = Servo(pin=12, max_angle=30, min_angle=-90)panAngle = 0tiltAngle = 0pan.set_angle(panAngle)tilt.set_angle(tiltAngle)sleep(1)while True:for angle in range(0, 90, 1):pan.set_angle(angle)tilt.set_angle(angle)sleep(.01)sleep(.5)for angle in range(90, -90, -1):pan.set_angle(angle)tilt.set_angle(angle)sleep(.01)sleep(.5)for angle in range(-90, 0, 1):pan.set_angle(angle)tilt.set_angle(angle)sleep(.01)sleep(.5)
  1. 在树莓派相应文件目录中输入`“python face_tracking_PID.py --cascade haarcascade_frontalface_default.xml",即可实现对人脸对象自动追踪。相较之前的非PID控制而言,系统运行会更顺滑一些。在本例中采用的命令参数输入的方式,可以方便有多个人脸识别级联分类器时随时切换。
  2. 当运行时,可能会有摄像头随机摆动的现象出现,这是因为人脸识别级联分类器的识别过程中的误识别,对于普通用户我们还无能为力,只能是避开经常被误该识别的物体。

这篇关于树莓派,opencv,Picamera2利用舵机云台追踪人脸(PID控制)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/540333

相关文章

Spring Boot集成/输出/日志级别控制/持久化开发实践

《SpringBoot集成/输出/日志级别控制/持久化开发实践》SpringBoot默认集成Logback,支持灵活日志级别配置(INFO/DEBUG等),输出包含时间戳、级别、类名等信息,并可通过... 目录一、日志概述1.1、Spring Boot日志简介1.2、日志框架与默认配置1.3、日志的核心作用

OpenCV在Java中的完整集成指南分享

《OpenCV在Java中的完整集成指南分享》本文详解了在Java中集成OpenCV的方法,涵盖jar包导入、dll配置、JNI路径设置及跨平台兼容性处理,提供了图像处理、特征检测、实时视频分析等应用... 目录1. OpenCV简介与应用领域1.1 OpenCV的诞生与发展1.2 OpenCV的应用领域2

在Java中使用OpenCV实践

《在Java中使用OpenCV实践》用户分享了在Java项目中集成OpenCV4.10.0的实践经验,涵盖库简介、Windows安装、依赖配置及灰度图测试,强调其在图像处理领域的多功能性,并计划后续探... 目录前言一 、OpenCV1.简介2.下载与安装3.目录说明二、在Java项目中使用三 、测试1.测

浅析Spring如何控制Bean的加载顺序

《浅析Spring如何控制Bean的加载顺序》在大多数情况下,我们不需要手动控制Bean的加载顺序,因为Spring的IoC容器足够智能,但在某些特殊场景下,这种隐式的依赖关系可能不存在,下面我们就来... 目录核心原则:依赖驱动加载手动控制 Bean 加载顺序的方法方法 1:使用@DependsOn(最直

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

MySQL追踪数据库表更新操作来源的全面指南

《MySQL追踪数据库表更新操作来源的全面指南》本文将以一个具体问题为例,如何监测哪个IP来源对数据库表statistics_test进行了UPDATE操作,文内探讨了多种方法,并提供了详细的代码... 目录引言1. 为什么需要监控数据库更新操作2. 方法1:启用数据库审计日志(1)mysql/mariad

Spring如何使用注解@DependsOn控制Bean加载顺序

《Spring如何使用注解@DependsOn控制Bean加载顺序》:本文主要介绍Spring如何使用注解@DependsOn控制Bean加载顺序,具有很好的参考价值,希望对大家有所帮助,如有错误... 目录1.javascript 前言2. 代码实现总结1. 前言默认情况下,Spring加载Bean的顺

Python如何将OpenCV摄像头视频流通过浏览器播放

《Python如何将OpenCV摄像头视频流通过浏览器播放》:本文主要介绍Python如何将OpenCV摄像头视频流通过浏览器播放的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完... 目录方法1:使用Flask + MJPEG流实现代码使用方法优点缺点方法2:使用WebSocket传输视

基于Python开发Windows屏幕控制工具

《基于Python开发Windows屏幕控制工具》在数字化办公时代,屏幕管理已成为提升工作效率和保护眼睛健康的重要环节,本文将分享一个基于Python和PySide6开发的Windows屏幕控制工具,... 目录概述功能亮点界面展示实现步骤详解1. 环境准备2. 亮度控制模块3. 息屏功能实现4. 息屏时间

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解