长篇大论Python生成器

2023-12-26 13:30

本文主要是介绍长篇大论Python生成器,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Python生成器是什么

一句话解释:包含了yield关键字的函数就是生成器,它的返回值是一个生成器对象。我简单画了个示意图:

86ccb37b86f39b22ddc6eb4ce5e22574.png

  • yield相当于return。

  • 函数遇到yield就暂停,保存当前信息,返回yield的值。

  • 在下次执行next()时,从当前位置继续执行。

比较有意思的事情是,曾经有人建议生成器函数不应该使用def,而应该发明一个新的关键字比如gen,但是Python之父Guido并没有同意这样做。

生成器函数的工作原理

先通过一个简单示例来说明生成器的行为:

# 定义一个生成器
>>> def gen_123():
...     yield 1
...     yield 2
...     yield 3
...# 生成器本身是个函数
>>> gen_123
<function gen_123 at 0x0000019F60710790># 返回值是生成器对象
>>> gen_123()
<generator object gen_123 at 0x0000019F606AC040># 生成器也是迭代器
>>> for i in gen_123():
...     print(i)
...     
1
2
3# 验证生成器也是迭代器,定义迭代器g
>>> g = gen_123()# 可以通过next()获取yield生成的下一个元素
>>> next(g)
1
>>> next(g)
2
>>> next(g)
3
>>> next(g)
Traceback (most recent call last):File "<input>", line 1, in <module>
StopIteration

生成器的原理就是:

  1. 生成器函数会创建一个生成器对象。

  2. 把生成器传给next()函数时,生成器函数会执行函数定义体中的下一个yield语句,返回产出的值,并在当前位置暂停。

  3. 函数的定义体返回时,外层的生成器对象会抛出StopIteration异常

yield关键字一般是和for循环搭配使用的,在for循环中会隐式调用next()函数。

生成器的作用其实是解决内存的问题,比如我们都知道Python的正则表达式有一个re.findall()函数,它会把所有匹配到的元素都一次性写入内存中,假如匹配到的数据很多,就会占用大量的内存。为了解决这个问题,Python3有一个re.finditer()函数,返回的就是一个生成器,取值时才生成数据放入内存中,能节省大量内存。

标准库中的生成器函数

实现生成器时要知道标准库中有什么可用,否则很可能会重新发明轮子。有些是内置的,有些在itertools模块中,有些functools模块中。

用于过滤的生成器函数

从输入的可迭代对象中产出元素的子集,而且不修改元素本身。

4b9c70ea33deee3122910581abb1449f.png

用于映射的生成器函数

在输入的单个可迭代对象中的各个元素上做计算,然后返回结果。

2ea0b99373ed8185e2823037a7c58bab.png

合并多个可迭代对象的生成器函数

从输入的多个可迭代对象中产出元素。

a7c9c896ffb90e6f81792be830f0706f.png

把输入的各个元素扩展成多个输出元素的生成器函数

从一个元素中产出多个值,扩展输入的可迭代对象。

4a193edae252f695978006cefb3d8afc.png

用于重新排列元素的生成器函数

产出输入的可迭代对象中的全部元素,不过会以某种方式重新排列。

25f1049754d1bf35ddd2053dfc30170e.png

yield from

yield from是Python3.3新出现的句法,它的作用是把不同的生成器结合在一起使用。

比如生成器函数需要产出另一个生成器生成的值,传统的解决办法是使用for循环:

def chain(*iterables):for it in iterables:for i in it:yield is = "ABC"
t = tuple(range(3))
print(list(chain(s, t)))  # ["A", "B", "C", 0, 1, 2]

改成yield from:

def chain(*iterables):for it in iterables:yield from i

完全代替了内层的for循环。

参考资料:

《流畅的Python》第14章 可迭代的对象、迭代器和生成器

https://www.runoob.com/python3/python3-iterator-generator.html

这篇关于长篇大论Python生成器的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/539589

相关文章

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

Python包管理工具pip的升级指南

《Python包管理工具pip的升级指南》本文全面探讨Python包管理工具pip的升级策略,从基础升级方法到高级技巧,涵盖不同操作系统环境下的最佳实践,我们将深入分析pip的工作原理,介绍多种升级方... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中反转字符串的常见方法小结

《Python中反转字符串的常见方法小结》在Python中,字符串对象没有内置的反转方法,然而,在实际开发中,我们经常会遇到需要反转字符串的场景,比如处理回文字符串、文本加密等,因此,掌握如何在Pyt... 目录python中反转字符串的方法技术背景实现步骤1. 使用切片2. 使用 reversed() 函

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Python使用pip工具实现包自动更新的多种方法

《Python使用pip工具实现包自动更新的多种方法》本文深入探讨了使用Python的pip工具实现包自动更新的各种方法和技术,我们将从基础概念开始,逐步介绍手动更新方法、自动化脚本编写、结合CI/C... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核