ISP 状态机轮转和bubble恢复机制学习笔记

2023-12-26 07:12

本文主要是介绍ISP 状态机轮转和bubble恢复机制学习笔记,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 ISP的中断类型

ISP中断类型
SOF: 一帧图像数据开始传输
EOF: 一帧图像数据传输完成
REG_UPDATE: ISP寄存器更新完成(每个reg group都有独立的这个中断)
EPOCH: ISP某一行结尾(默认20)就会产生此中断
BUFFER DONE: 一帧图像数据ISP完全写到DDR了

2 ISP驱动状态机

通过camera context ops来实现的。
具体包含两种状态机,1、state machine 2、substate machine
当处于state machine的active状态时,substate machine才会工作起来。
除了substate machine外,还有substate_machine_irq用来接收中断处理。
一个中断如何调用到substate_machine的操作集中,流程图如下图示:
在这里插入图片描述

概述:
1)csl中调用流程1
umd的csl中调用ioctl,调用到内核中cam_node,然后调用到cam_context, cam_context会根据状态机中的ioctl_ops设置,调用对应接口处理。
2)crm中调用流程2
crm处理req时,经过crm_node_intf调用到cam_node,然后调用到cam_context, 进而调用到状态机中crm_ops的相关函数。
3)收到irq处理流程3
当顶部状态机处于actived状态时,当isp中收到SOF中断时,irq经过ife_hw_mgr调用到cam_context, 进而调用到状态机中irq_ops, irq_ops会进一步调用到子状态机中irq_ops相关函数来处理。

3 Top State Machine

  • 什么是顶部状态机?
    cam_context中定义了几种状态,完成cam context中不同状态的轮转和不同流程处理。
    umd中node调用kmd中cam context时,根据不同状态做不同处理。

  • 调用入口:
    当cam_isp_dev_component_bind时,会循环多次(如果是ife会循环8次)初始化cam_isp_context_init,
    然后设置给cam context设置顶部状态机,定义如下
    ctx_base->state_machine = cam_isp_ctx_top_state_machine;

3.1 状态机类型

/*** enum cam_ctx_state -  context top level states*/
enum cam_context_state {CAM_CTX_UNINIT               = 0,CAM_CTX_AVAILABLE            = 1,CAM_CTX_ACQUIRED             = 2,CAM_CTX_READY                = 3,CAM_CTX_FLUSHED              = 4,CAM_CTX_ACTIVATED            = 5,CAM_CTX_STATE_MAX            = 6,
};

3.2 状态机如何流转

在这里插入图片描述

4 Activated Substate Machine

  • 子状态机的用处?
    只有在cam_ctx_activated时,子状态机才有效。这是isp的子状态,由isp中断来驱动状态机切换。来了不同中断,切换不同子状态,然后处理request,并且把request move到不同的list里,直到最后buffer done中断来了之后,把request从isp上下文中彻底移除,并且通知camera sync这个request的buffer 已经填好了。

  • 入口,在哪里赋值的?
    在cam_isp_context_init时,会设置子状态机和子状态机下的中断处理。

cam_isp_context_init()ctx->substate_activated = CAM_ISP_CTX_ACTIVATED_SOF;ctx->substate_machine = cam_isp_ctx_activated_state_machine;ctx->substate_machine_irq = cam_isp_ctx_activated_state_machine_irq;

4.1 子状态机类型

/*** enum cam_isp_ctx_activated_substate - sub states for activated**/
enum cam_isp_ctx_activated_substate {CAM_ISP_CTX_ACTIVATED_SOF,CAM_ISP_CTX_ACTIVATED_APPLIED,CAM_ISP_CTX_ACTIVATED_EPOCH,CAM_ISP_CTX_ACTIVATED_BUBBLE,CAM_ISP_CTX_ACTIVATED_BUBBLE_APPLIED,CAM_ISP_CTX_ACTIVATED_HW_ERROR,CAM_ISP_CTX_ACTIVATED_HALT,CAM_ISP_CTX_ACTIVATED_MAX,
};

struct cam_isp_ctx_irq_ops 定义了中断处理函数,他是根据子状态机当前状态找到对应处理接口。

static struct cam_isp_ctx_irq_opscam_isp_ctx_activated_state_machine_irq[CAM_ISP_CTX_ACTIVATED_MAX] = {/* SOF */{.irq_ops = {__cam_isp_ctx_handle_error,__cam_isp_ctx_sof_in_activated_state,__cam_isp_ctx_reg_upd_in_sof,__cam_isp_ctx_notify_sof_in_activated_state,__cam_isp_ctx_notify_eof_in_activated_state,__cam_isp_ctx_buf_done_in_sof,__cam_isp_ctx_handle_secondary_events,},},/* APPLIED */{.irq_ops = {__cam_isp_ctx_handle_error,__cam_isp_ctx_sof_in_activated_state,__cam_isp_ctx_reg_upd_in_applied_state,__cam_isp_ctx_epoch_in_applied,__cam_isp_ctx_notify_eof_in_activated_state,__cam_isp_ctx_buf_done_in_applied,__cam_isp_ctx_handle_secondary_events,},},/* EPOCH */{.irq_ops = {__cam_isp_ctx_handle_error,__cam_isp_ctx_sof_in_epoch,__cam_isp_ctx_reg_upd_in_epoch_bubble_state,__cam_isp_ctx_notify_sof_in_activated_state,__cam_isp_ctx_notify_eof_in_activated_state,__cam_isp_ctx_buf_done_in_epoch,__cam_isp_ctx_handle_secondary_events,},},/* BUBBLE */{.irq_ops = {__cam_isp_ctx_handle_error,__cam_isp_ctx_sof_in_activated_state,__cam_isp_ctx_reg_upd_in_epoch_bubble_state,__cam_isp_ctx_notify_sof_in_activated_state,__cam_isp_ctx_notify_eof_in_activated_state,__cam_isp_ctx_buf_done_in_bubble,__cam_isp_ctx_handle_secondary_events,},},/* Bubble Applied */{.irq_ops = {__cam_isp_ctx_handle_error,__cam_isp_ctx_sof_in_activated_state,__cam_isp_ctx_reg_upd_in_applied_state,__cam_isp_ctx_epoch_in_bubble_applied,NULL,__cam_isp_ctx_buf_done_in_bubble_applied,__cam_isp_ctx_handle_secondary_events,},},/* HW ERROR */{.irq_ops = {NULL,__cam_isp_ctx_sof_in_activated_state,__cam_isp_ctx_reg_upd_in_hw_error,NULL,NULL,NULL,},},/* HALT */{},
};

4.2 子状态机如何流转

首先调用start_dev接口后,isp子状态机进入SOF状态。
在这里插入图片描述
分2种情况:

  • isp正常工作子状态切换
    在这里插入图片描述

  • isp Bubble模式子状态切换
    在这里插入图片描述

这篇关于ISP 状态机轮转和bubble恢复机制学习笔记的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/538514

相关文章

重新对Java的类加载器的学习方式

《重新对Java的类加载器的学习方式》:本文主要介绍重新对Java的类加载器的学习方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、介绍1.1、简介1.2、符号引用和直接引用1、符号引用2、直接引用3、符号转直接的过程2、加载流程3、类加载的分类3.1、显示

嵌入式Linux驱动中的异步通知机制详解

《嵌入式Linux驱动中的异步通知机制详解》:本文主要介绍嵌入式Linux驱动中的异步通知机制,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言一、异步通知的核心概念1. 什么是异步通知2. 异步通知的关键组件二、异步通知的实现原理三、代码示例分析1. 设备结构

JVM垃圾回收机制之GC解读

《JVM垃圾回收机制之GC解读》:本文主要介绍JVM垃圾回收机制之GC,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、死亡对象的判断算法1.1 引用计数算法1.2 可达性分析算法二、垃圾回收算法2.1 标记-清除算法2.2 复制算法2.3 标记-整理算法2.4

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

C++如何通过Qt反射机制实现数据类序列化

《C++如何通过Qt反射机制实现数据类序列化》在C++工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作,所以本文就来聊聊C++如何通过Qt反射机制实现数据类序列化吧... 目录设计预期设计思路代码实现使用方法在 C++ 工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作。由于数据类

SpringRetry重试机制之@Retryable注解与重试策略详解

《SpringRetry重试机制之@Retryable注解与重试策略详解》本文将详细介绍SpringRetry的重试机制,特别是@Retryable注解的使用及各种重试策略的配置,帮助开发者构建更加健... 目录引言一、SpringRetry基础知识二、启用SpringRetry三、@Retryable注解

SpringKafka错误处理(重试机制与死信队列)

《SpringKafka错误处理(重试机制与死信队列)》SpringKafka提供了全面的错误处理机制,通过灵活的重试策略和死信队列处理,下面就来介绍一下,具有一定的参考价值,感兴趣的可以了解一下... 目录引言一、Spring Kafka错误处理基础二、配置重试机制三、死信队列实现四、特定异常的处理策略五

利用Python快速搭建Markdown笔记发布系统

《利用Python快速搭建Markdown笔记发布系统》这篇文章主要为大家详细介绍了使用Python生态的成熟工具,在30分钟内搭建一个支持Markdown渲染、分类标签、全文搜索的私有化知识发布系统... 目录引言:为什么要自建知识博客一、技术选型:极简主义开发栈二、系统架构设计三、核心代码实现(分步解析

java中反射(Reflection)机制举例详解

《java中反射(Reflection)机制举例详解》Java中的反射机制是指Java程序在运行期间可以获取到一个对象的全部信息,:本文主要介绍java中反射(Reflection)机制的相关资料... 目录一、什么是反射?二、反射的用途三、获取Class对象四、Class类型的对象使用场景1五、Class

使用Python实现网络设备配置备份与恢复

《使用Python实现网络设备配置备份与恢复》网络设备配置备份与恢复在网络安全管理中起着至关重要的作用,本文为大家介绍了如何通过Python实现网络设备配置备份与恢复,需要的可以参考下... 目录一、网络设备配置备份与恢复的概念与重要性二、网络设备配置备份与恢复的分类三、python网络设备配置备份与恢复实