基于python编写的服务器之间流量传输netflow_exporter

2023-12-26 06:45

本文主要是介绍基于python编写的服务器之间流量传输netflow_exporter,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、背景

通常企业会在多个机房部署IT系统,在大数据基础服务组件中会集群跨机房部署或是跨机房抽取数据的场景,在抽数任务时间节点没有错开的时候,经常会造成带宽打满的情况,跨机房的带宽费用比较昂贵,不考虑成本去扩跨机房的带宽是不现实的。为了跟踪各服务器之间的网络交互的情况,更好调配抽数任务,用python写了一个netflow_exporter,将服务之间的流量传输进行监控,并将采集的数据接入Prometheus,最后在Grafana上展示。

二、代码展示

#!/usr/bin/python3
#coding=utf-8
#采集监控服务器之间流量传输大小,接入Prometheus,在grafana展示
""""
author: zjh
date: 2023-12-20
description: Scrape netflow to promethues
"""
import os
import prometheus_client
from prometheus_client import Counter, Gauge
from prometheus_client.core import CollectorRegistry
from flask import Response, Flaskdef change_unit(unit):if "Mb" in unit:flow = float(unit.strip("Mb")) * 1024return flowelif "Kb" in unit:flow = float(unit.strip("Kb"))return flowelif "b" in unit:flow = float(unit.strip("b")) / 1024return flowdef get_flow():#iftop参数:-t 使用不带ncurses的文本界面,-P显示主机以及端口信息,-N只显示连接端口号,不显示端口对应的服务名称,-n 将输出的主机信息都通过IP显示,不进行DNS解析,-s num  num秒后打印一次文本输出然后退出#1.服务器上运行result = os.popen("iftop -t  -N -n -s 2 2>/dev/null |grep -A 1 -E '^   [0-9]'").read()#2.本地测试数据#result = open("basedatanoport.txt").read()#以换行符进行分割iftop_list = result.split("\n")#print(iftop_list)count = int(len(iftop_list))#定义字典 存放主机信息和进出流量flow_dict = {}for i in range(int(count/2)):flow_msg = ""#获取发送的ip地址(本地ip地址),数据偶数位为本地发送流量信息location_li_s = iftop_list[i*2]send_flow_lists = location_li_s.split(" ")#去空元素while '' in send_flow_lists:send_flow_lists.remove('')localhostip = send_flow_lists[1]send_flow = send_flow_lists[3]send_flow_float = change_unit(send_flow)#获取接收的流量location_li_r = iftop_list[i*2+1]rec_flow_lists = location_li_r.split(" ")while '' in rec_flow_lists:rec_flow_lists.remove('')remote_host_ip = rec_flow_lists[0]rec_flow = rec_flow_lists[3]rec_flow_float = change_unit(rec_flow)local_remote_host=localhostip+str(' <==> ')+remote_host_ipflow_msg = str(float('%2.f' % send_flow_float)) + "|" + str(float('%.2f' % rec_flow_float))flow_dict[local_remote_host] = flow_msgsend_rows = []rec_rows = []for key in flow_dict:send_row_tmp_dict = {}rec_row_tmp_dict = {}flow_li = flow_dict[key].split("|")#flow_li[0]为发送流量,flow_li[1]为接收流量,单位是Kb#print(key + "|" + flow_li[0]  + "|" +  flow_li[1])send_row_tmp_dict['remoteip'] = key.replace('<','>')send_row_tmp_dict['value'] = flow_li[0]rec_row_tmp_dict['remoteip'] = key.replace('>','<')rec_row_tmp_dict['value'] = flow_li[1]send_rows.append(send_row_tmp_dict)rec_rows.append(rec_row_tmp_dict)return send_rows,rec_rowsapp = Flask(__name__)REGISTRY = CollectorRegistry(auto_describe=False)
count = Counter('count','count',registry=REGISTRY
)
networksSend = Gauge(name="send_flow",documentation="Send_Flow_Kb",namespace="netflow",labelnames=["remoteip"],registry=REGISTRY
)
networkReceive = Gauge(name="receive_flow",documentation="Receive_Flow_Kb",namespace="netflow",labelnames=["remoteip"],registry=REGISTRY
)c = Gauge('my_requests_total', 'HTTP Failures', ['method', 'endpoint'],registry=REGISTRY)@app.route('/metrics')
def r_value():#获取流量信息send_rows,rec_rows = get_flow()for row_s in send_rows:networksSend.labels(row_s['remoteip']).set(row_s['value'])for row_r in rec_rows:networkReceive.labels(row_r['remoteip']).set(row_r['value'])c.labels('test', '1').inc()c.labels('post', '/submit').inc()return Response(prometheus_client.generate_latest(REGISTRY),mimetype="text/plain")@app.route('/')
def index():return "<html>" \"<head><title>NetWorkTraffic Exporter</title></head>" \"<body>" \"<h1>NetWorkTraffic Exporter</h1>" \"<p><a href=" + ('/metrics') + ">Metrics</a></p></body>" \"</html>"if __name__ == '__main__':#1.本地测试app.run(host='localhost',port=9101,debug=True)#2.服务器上部署input_list=sys.argv[1:]app.run(host=input_list[0],port=9101,debug=False)

三、在服务器上部署的前提条件:

1. linux 安装iftop命令

yum install iftop -y

2.安装python依赖

pip3 install -r requirement.txt
[root@test]:/opt/zjh/netflowmonitor
#cat requirement.txt 
flask
prometheus_client

3.启动,启动脚本 后面加本机IP

nohup /usr/bin/python3 netflowmonitor.py 192.168.10.11 &

在promethues上增加配置

  - job_name: 'netflow'scrape_timeout: 10smetrics_path: '/metrics'static_configs:- targets: ['192.168.10.11:9101','192.168.10.12:9101']labels:job: netflow proj: flow
# prometuhes重新加载配置
curl -X POST http://localhost:9090/-/reload

四、Grafana上增加dashboard

1.设置变量

在这里插入图片描述

2.修改Y坐标的单位为kibibytes(1kibibytes = 1024b),kilobytes(1kilobytes = 1000b)

我这里选择kibibytes
在这里插入图片描述

3.增加发送和接收的面板

在这里插入图片描述

流量走向监控基本思想和实现代码介绍到这里,后面还会继续优化。欢迎评论交流,转发和点赞,收藏!
同时也介绍下个人公众号:运维仙人,期待您的关注。
在这里插入图片描述

这篇关于基于python编写的服务器之间流量传输netflow_exporter的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/538449

相关文章

python进行while遍历的常见错误解析

《python进行while遍历的常见错误解析》在Python中选择合适的遍历方式需要综合考虑可读性、性能和具体需求,本文就来和大家讲解一下python中while遍历常见错误以及所有遍历方法的优缺点... 目录一、超出数组范围问题分析错误复现解决方法关键区别二、continue使用问题分析正确写法关键点三

使用Python实现调用API获取图片存储到本地的方法

《使用Python实现调用API获取图片存储到本地的方法》开发一个自动化工具,用于从JSON数据源中提取图像ID,通过调用指定API获取未经压缩的原始图像文件,并确保下载结果与Postman等工具直接... 目录使用python实现调用API获取图片存储到本地1、项目概述2、核心功能3、环境准备4、代码实现

8种快速易用的Python Matplotlib数据可视化方法汇总(附源码)

《8种快速易用的PythonMatplotlib数据可视化方法汇总(附源码)》你是否曾经面对一堆复杂的数据,却不知道如何让它们变得直观易懂?别慌,Python的Matplotlib库是你数据可视化的... 目录引言1. 折线图(Line Plot)——趋势分析2. 柱状图(Bar Chart)——对比分析3

Python模拟串口通信的示例详解

《Python模拟串口通信的示例详解》pySerial是Python中用于操作串口的第三方模块,它支持Windows、Linux、OSX、BSD等多个平台,下面我们就来看看Python如何使用pySe... 目录1.win 下载虚www.chinasem.cn拟串口2、确定串口号3、配置串口4、串口通信示例5

Python Pandas高效处理Excel数据完整指南

《PythonPandas高效处理Excel数据完整指南》在数据驱动的时代,Excel仍是大量企业存储核心数据的工具,Python的Pandas库凭借其向量化计算、内存优化和丰富的数据处理接口,成为... 目录一、环境搭建与数据读取1.1 基础环境配置1.2 数据高效载入技巧二、数据清洗核心战术2.1 缺失

利用Python实现Excel文件智能合并工具

《利用Python实现Excel文件智能合并工具》有时候,我们需要将多个Excel文件按照特定顺序合并成一个文件,这样可以更方便地进行后续的数据处理和分析,下面我们看看如何使用Python实现Exce... 目录运行结果为什么需要这个工具技术实现工具的核心功能代码解析使用示例工具优化与扩展有时候,我们需要将

Python+PyQt5实现文件夹结构映射工具

《Python+PyQt5实现文件夹结构映射工具》在日常工作中,我们经常需要对文件夹结构进行复制和备份,本文将带来一款基于PyQt5开发的文件夹结构映射工具,感兴趣的小伙伴可以跟随小编一起学习一下... 目录概述功能亮点展示效果软件使用步骤代码解析1. 主窗口设计(FolderCopyApp)2. 拖拽路径

Python使用Reflex构建现代Web应用的完全指南

《Python使用Reflex构建现代Web应用的完全指南》这篇文章为大家深入介绍了Reflex框架的设计理念,技术特性,项目结构,核心API,实际开发流程以及与其他框架的对比和部署建议,感兴趣的小伙... 目录什么是 ReFlex?为什么选择 Reflex?安装与环境配置构建你的第一个应用核心概念解析组件

Python将字符串转换为小写字母的几种常用方法

《Python将字符串转换为小写字母的几种常用方法》:本文主要介绍Python中将字符串大写字母转小写的四种方法:lower()方法简洁高效,手动ASCII转换灵活可控,str.translate... 目录一、使用内置方法 lower()(最简单)二、手动遍历 + ASCII 码转换三、使用 str.tr

Python处理超大规模数据的4大方法详解

《Python处理超大规模数据的4大方法详解》在数据的奇妙世界里,数据量就像滚雪球一样,越变越大,从最初的GB级别的小数据堆,逐渐演变成TB级别的数据大山,所以本文我们就来看看Python处理... 目录1. Mars:数据处理界的 “变形金刚”2. Dask:分布式计算的 “指挥家”3. CuPy:GPU