迪杰斯特拉算法详解

2023-12-25 17:04
文章标签 算法 详解 斯特拉 迪杰

本文主要是介绍迪杰斯特拉算法详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

迪杰斯特拉算法详解

首先要知道的是,迪杰斯特拉算法是求解单源最短路径的,就是在一个图中(无向图和有向图均可),指定一个源点,求出来这个源点到其他各个节点的最短路径。
在这里插入图片描述

存图

首先,我需要用邻接矩阵把图存起来,邻接矩阵也就是一个二维数组。例如如果节点1到节点2的距离为20,那么邻接矩阵的 [1] [2] = 20。 我是这样保存的:如果题目中没提到距离,只是说明了是否存在路径,那么就将存在路径的邻接矩阵值设置为1,否则设置为0,设置 [i] [i] = 1,因为自身肯定是能到达自身的嘛;如果题目给了节点之间的距离,那么对应的邻接矩阵的值也要设置为其距离,到不了的就设置为INF(无穷大),设置 [i] [i] = 0,因为自身到自身的距离肯定是0。
以没提到距离的情况来写代码就是这样的:

class Graph  : public QObject
{Q_OBJECTpublic:Graph(int V, QObject *parent);~Graph();void addEdge(int u, int v, int w);
private:int V;  // 顶点的数量int adjMatrix[MAX][MAX];  // 邻接矩阵
};

在构造函数中初始化邻接矩阵

Graph::Graph(int V, QObject *parent): V(V),QObject(parent)
{for (int i = 0; i < V; ++i)for (int j = 0; j < V; ++j){// 初始化邻接矩阵adjMatrix[i][j] = (i == j) ? 1 : INF;// 如果是有距离的情况,写这个// adjMatrix[i][j] = (i == j) ? 0 : INF;}}

添加边

void Graph::addEdge(int u, int v, int w)
{adjMatrix[u][v] = w;adjMatrix[v][u] = w;
}

迪杰斯特拉思路

首先,我需要设置一个容器,假设为A,A中存放的是当前已经访问过的节点以及该节点到达源点的最短距离(注意,这个会随着后面节点的加入而不断更新)。同时,还需要设置一个数组visited来标记这个节点是否已经访问过(不然我怎么知道这个节点有没有被访问过呢),再设置一个数组parent用来保存计算好的最短路径,例如 parent [5] = 1 ,表示节点5的父节点为节点1,依次再找出节点1的父节点……就能够找到最短路径。

然后就是,先把我的源点放入容器A中,同时设置状态为已访问,目前起点就是我的源点,然后从剩下的未被访问过的节点中依次取出与起点相连通的节点进行比较,如果节点到起点的距离与起点到源点的距离之和小于源点到该节点的距离,那么就将此节点和其到源点的距离放入A中,同时设置其parent值为起点。

然后从A中取出到源点距离最近的节点,将起点改为此节点,同时设置状态为已访问,然后再次从剩下的未被访问过的节点中依次取出与起点相连通的节点进行比较,如果节点到起点的距离与起点到源点的距离之和小于源点到该节点的距离,那么就将此节点和其到源点的距离放入A中,同时设置其parent值为起点(如果A中已经存在此节点,那么就更新其距离为它到当前设置的起点的距离与起点到源点的距离之和,同时更新parent值为当前设置的起点)。

以此类推,直到所有节点均被访问为止。这里使用到的原理是,如果某个节点到起点的距离是最短的,那么它到源点的距离也将是最短的,通过遍历不同的起点,不断比较和更新节点到源点的距离,来得到最优解。

只看文字有点绕口,来看代码吧!

代码详解

// src就是源点,dist就是上面提到的容器A,adjMatrix就是保存图的邻接矩阵
void Graph::dijkstra(int src, std::vector<int>& dist, int adjMatrix[MAX][MAX])
{// 使用优先队列来选择下一个要处理的节点// pair<int, int>表示距离和节点的组合,greater确保队列按距离递增的顺序排列(小的在队头)// 默认先比较第一个元素,第一个相等则比较第二个std::priority_queue<std::pair<int, int>, std::vector<std::pair<int, int>>, std::greater<std::pair<int, int>>> pq;// 用于标记节点是否已经被访问std::vector<bool> visited(V, false);// 初始化存储最短路径的向量为无穷大(INF)dist = std::vector<int>(V, INF);// 将源节点及其距离(0)放入优先队列pq.push(std::make_pair(0, src));// 将源节点到自身的距离设置为0dist[src] = 0;// 用于存储最短路径的父节点std::vector<int> parent(V, -1);// 进入主循环,直到优先队列为空while (!pq.empty()) {// 从优先队列中取出当前距离最小的节点int u = pq.top().second;// 将该节点从优先队列中移除pq.pop();// 标记当前节点为已访问visited[u] = true;// 遍历与当前节点相邻的所有节点for (int v = 0; v < V; ++v){// 检查如果节点未被访问、存在连接边,并且通过当前节点的路径距离更短// 这里存在连接边的设置考虑到了路径包含距离与不包含距离的两种情况// 包含距离,不存在连接边则adjMatrix[u][v]==INF// 不包含距离,不存在连接边则adjMatrix[u][v]==0if (!visited[v] && adjMatrix[u][v]!=INF && adjMatrix[u][v] && dist[u] + adjMatrix[u][v] < dist[v]){// 更新从源节点到节点v的最短路径dist[v] = dist[u] + adjMatrix[u][v];// 记录最短路径的父节点parent[v] = u;// 将更新后的节点v及其新距离放入优先队列pq.push(std::make_pair(dist[v], v));}}}
}

这里用到了STL里面的优先队列,以此来找到dist中到源点距离最近的节点。
将这个节点作为起点,不断的从剩下未被访问的节点中取出节点,计算出取出的节点到起点的距离与起点到源点的距离之和来与取出的节点到源点的距离作比较,如果前者更小,那么就更新这个节点到源点的距离。

最后当所有节点的状态都是已访问时,直到队列弹出最后一个元素,退出循环。

打印路径

上面说到,路径信息都保存在了parent数组中,该怎么打印出来呢?
简单点,设置一个栈,栈的特性是先进后出,我们把最后一个节点的parent先压入栈中,然后再把最后一个节点的parent的parent压入栈中……最后在压入源点,再依次弹出栈顶元素就好啦!

// src表示源点,dest表示终点
// 如果想得到源点到所有终点的路径,加个循环即可
void Graph::saveDjPath(int src, int dest, std::vector<int>& parent)
{std::stack<int> path;int current = dest;while (current != src) {// 进栈path.push(current);current = parent[current];}// 将源点压入栈中path.push(src);std::cout<<src<<"到"<<dest<<"路径为:";while (!path.empty()) {std::cout<<path.top()<<' ';path.pop();}cout<<endl;
}

这篇关于迪杰斯特拉算法详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/536254

相关文章

MySQL数据库双机热备的配置方法详解

《MySQL数据库双机热备的配置方法详解》在企业级应用中,数据库的高可用性和数据的安全性是至关重要的,MySQL作为最流行的开源关系型数据库管理系统之一,提供了多种方式来实现高可用性,其中双机热备(M... 目录1. 环境准备1.1 安装mysql1.2 配置MySQL1.2.1 主服务器配置1.2.2 从

Linux kill正在执行的后台任务 kill进程组使用详解

《Linuxkill正在执行的后台任务kill进程组使用详解》文章介绍了两个脚本的功能和区别,以及执行这些脚本时遇到的进程管理问题,通过查看进程树、使用`kill`命令和`lsof`命令,分析了子... 目录零. 用到的命令一. 待执行的脚本二. 执行含子进程的脚本,并kill2.1 进程查看2.2 遇到的

MyBatis常用XML语法详解

《MyBatis常用XML语法详解》文章介绍了MyBatis常用XML语法,包括结果映射、查询语句、插入语句、更新语句、删除语句、动态SQL标签以及ehcache.xml文件的使用,感兴趣的朋友跟随小... 目录1、定义结果映射2、查询语句3、插入语句4、更新语句5、删除语句6、动态 SQL 标签7、ehc

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置

从基础到高级详解Go语言中错误处理的实践指南

《从基础到高级详解Go语言中错误处理的实践指南》Go语言采用了一种独特而明确的错误处理哲学,与其他主流编程语言形成鲜明对比,本文将为大家详细介绍Go语言中错误处理详细方法,希望对大家有所帮助... 目录1 Go 错误处理哲学与核心机制1.1 错误接口设计1.2 错误与异常的区别2 错误创建与检查2.1 基础

k8s按需创建PV和使用PVC详解

《k8s按需创建PV和使用PVC详解》Kubernetes中,PV和PVC用于管理持久存储,StorageClass实现动态PV分配,PVC声明存储需求并绑定PV,通过kubectl验证状态,注意回收... 目录1.按需创建 PV(使用 StorageClass)创建 StorageClass2.创建 PV

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Redis 基本数据类型和使用详解

《Redis基本数据类型和使用详解》String是Redis最基本的数据类型,一个键对应一个值,它的功能十分强大,可以存储字符串、整数、浮点数等多种数据格式,本文给大家介绍Redis基本数据类型和... 目录一、Redis 入门介绍二、Redis 的五大基本数据类型2.1 String 类型2.2 Hash

Java中的.close()举例详解

《Java中的.close()举例详解》.close()方法只适用于通过window.open()打开的弹出窗口,对于浏览器的主窗口,如果没有得到用户允许是不能关闭的,:本文主要介绍Java中的.... 目录当你遇到以下三种情况时,一定要记得使用 .close():用法作用举例如何判断代码中的 input