28、清华大学脑机接口实验组SSVEP数据集:通过视觉触发BCI[飞一般的赶脚!]

本文主要是介绍28、清华大学脑机接口实验组SSVEP数据集:通过视觉触发BCI[飞一般的赶脚!],希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言:

哈喽,最近对清华大学脑机接口的数据进行了尝试,输入到了DL模型中,以下是本人对于清华BCI数据的个人见解。

数据地址:

清华大学脑机接口研究组 (tsinghua.edu.cn)

打开网站可以看到有很多个数据,官方对于每个数据都有介绍,但是只对于第一个数据:Benchmark Dataset官方所言最多,英文直接翻译就是基准数据集,下面的其他SSVEP数据都是对于该数据的变体,并且其他数据清华介绍也很少。下面对于这个基准数据进行介绍:

Benchmark Dataset:

该数据集收集了35名健康受试者(17名女性,年龄17-34岁,平均年龄:22岁)的SSVEP-BCI记录,重点关注在不同频率(8-15.8 Hz,间隔0.2 Hz)下闪烁的40个字符。对于每个受试者,实验由6个trials组成。每个trials包含40个试验对应于以随机顺序指示的全部40个字符。每次试验都以指示目标刺激的视觉提示(红色方块)开始。提示在屏幕上出现0.5秒。受试者被要求在提示持续时间内尽快将目光转向目标。提示偏移后,所有刺激开始同时在屏幕上闪烁,并持续5秒。刺激偏移后,在下一次试验开始前,屏幕空白0.5秒,这使得受试者在连续试验之间有短暂的休息时间。每次试验总共持续6秒。为了便于视觉固定,在刺激期间,闪烁的目标下方出现了一个红色三角形。在每个区块中,受试者被要求在刺激期间避免眨眼。为了避免视觉疲劳,在两个连续的盖帽之间休息几分钟。

使用Synamps2系统(Neuroscan,股份有限公司)以1000Hz的采样率采集EEG数据。放大器的通频带范围为0.15Hz到200Hz。六十四个通道覆盖受试者的整个头皮,并根据国际10-20系统排列。地面位于Fz和FPz之间。引用位于顶点上。电极阻抗保持在10KΩ以下。为了消除常见的电源线噪声,在数据记录中应用了50Hz陷波滤波器。事件触发器由计算机生成到放大器,并记录在与EEG数据同步的事件通道上。

连续的脑电图数据被分割为6秒的时期(刺激前500毫秒,刺激后5.5秒)。这些时期随后被下采样到250Hz。因此,每次试验包括1500个时间点。最后,这些数据作为双精度浮点值存储在MATLAB中,并命名为主题索引(即S01.mat,…,S35.mat)。对于每个文件,加载在MATLAB中的数据生成一个名为“data”的4-D矩阵,其维数[64,1500,40,6]。四个维度表示“电极数”、“时间点”、“目标指数”和“区块指数”。电极位置保存在“64通道.loc”文件中。每个SSVEP频率有六个试验。40个目标索引的频率和相位值保存在“Freq_phase.mat”文件中。

所有受试者的信息都列在“Sub_info.txt”文件中。对于每个科目,有五个因素,包括“科目指数”、“性别”、“年龄”、“熟练程度”和“群体”。根据受试者在基于SSVEP的脑机接口中的经验,将受试者分为“有经验”组(8名受试者,S01-S08)和“幼稚”组(27名受试人,S09-S35)。

总结:

sub:35人

采样率:250hz

data=(64,1500,40,6):电极数”、“时间点”、“目标指数”和“区块指数

target=(1,40)

标签print一下:

[[ 8. 9. 10. 11. 12. 13. 14. 15. 8.2 9.2 10.2 11.2 12.2 13.2

14.2 15.2 8.4 9.4 10.4 11.4 12.4 13.4 14.4 15.4 8.6 9.6 10.6 11.6

12.6 13.6 14.6 15.6 8.8 9.8 10.8 11.8 12.8 13.8 14.8 15.8]] (1, 40)

类别:40

数据重塑:

(64,1500,40,6)

(64,1500,240)

(240,64,1500)

(240,1,64,1500)

数据最终以(240,1,64,1500)作为CNN的输入,240个样本,1个人工的扩维的维度,当作输入通道数=1,H=64,W=1500.

标签独热编码结果:

这篇关于28、清华大学脑机接口实验组SSVEP数据集:通过视觉触发BCI[飞一般的赶脚!]的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/535938

相关文章

springboot下载接口限速功能实现

《springboot下载接口限速功能实现》通过Redis统计并发数动态调整每个用户带宽,核心逻辑为每秒读取并发送限定数据量,防止单用户占用过多资源,确保整体下载均衡且高效,本文给大家介绍spring... 目录 一、整体目标 二、涉及的主要类/方法✅ 三、核心流程图解(简化) 四、关键代码详解1️⃣ 设置

spring中的ImportSelector接口示例详解

《spring中的ImportSelector接口示例详解》Spring的ImportSelector接口用于动态选择配置类,实现条件化和模块化配置,关键方法selectImports根据注解信息返回... 目录一、核心作用二、关键方法三、扩展功能四、使用示例五、工作原理六、应用场景七、自定义实现Impor

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

MybatisPlus service接口功能介绍

《MybatisPlusservice接口功能介绍》:本文主要介绍MybatisPlusservice接口功能介绍,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友... 目录Service接口基本用法进阶用法总结:Lambda方法Service接口基本用法MyBATisP

使用SpringBoot整合Sharding Sphere实现数据脱敏的示例

《使用SpringBoot整合ShardingSphere实现数据脱敏的示例》ApacheShardingSphere数据脱敏模块,通过SQL拦截与改写实现敏感信息加密存储,解决手动处理繁琐及系统改... 目录痛点一:痛点二:脱敏配置Quick Start——Spring 显示配置:1.引入依赖2.创建脱敏

详解如何使用Python构建从数据到文档的自动化工作流

《详解如何使用Python构建从数据到文档的自动化工作流》这篇文章将通过真实工作场景拆解,为大家展示如何用Python构建自动化工作流,让工具代替人力完成这些数字苦力活,感兴趣的小伙伴可以跟随小编一起... 目录一、Excel处理:从数据搬运工到智能分析师二、PDF处理:文档工厂的智能生产线三、邮件自动化:

Python数据分析与可视化的全面指南(从数据清洗到图表呈现)

《Python数据分析与可视化的全面指南(从数据清洗到图表呈现)》Python是数据分析与可视化领域中最受欢迎的编程语言之一,凭借其丰富的库和工具,Python能够帮助我们快速处理、分析数据并生成高质... 目录一、数据采集与初步探索二、数据清洗的七种武器1. 缺失值处理策略2. 异常值检测与修正3. 数据

pandas实现数据concat拼接的示例代码

《pandas实现数据concat拼接的示例代码》pandas.concat用于合并DataFrame或Series,本文主要介绍了pandas实现数据concat拼接的示例代码,具有一定的参考价值,... 目录语法示例:使用pandas.concat合并数据默认的concat:参数axis=0,join=

C#代码实现解析WTGPS和BD数据

《C#代码实现解析WTGPS和BD数据》在现代的导航与定位应用中,准确解析GPS和北斗(BD)等卫星定位数据至关重要,本文将使用C#语言实现解析WTGPS和BD数据,需要的可以了解下... 目录一、代码结构概览1. 核心解析方法2. 位置信息解析3. 经纬度转换方法4. 日期和时间戳解析5. 辅助方法二、L