Opencv笔记:利用霍夫变换检测图像中的红球

2023-12-25 14:18

本文主要是介绍Opencv笔记:利用霍夫变换检测图像中的红球,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

代码功能为从一副图像中检测红球,当然也可以针对视频的单帧图像进行检测,关于霍夫圆变换HoughCircles()函数及其原理主要参考了《opencv3编程入门》

HoughCircles()函数

函数原型:

void HoughCircles(InputArray image, outputArray circles, int method, double dp, double minDist, double param1=100, double param2=100, int minRadius=0, int maxRadius=0);

参数说明:
image: 输入图像,8位灰度单通道图像;
circles: 用于储存检测到的园的输出矢量,(x, y, radius);
method: 调用的检测方法,opencv中使用的是霍夫梯度法(CV_HOUGH_GRADIENT);
dp: 用于检测圆心的累加器图像的分辨率与输入图像之比的倒数;
minDist: 检测的不同圆的圆心之间 的最小距离;
param1, param2: 与检测方法相对应的参数;
minRadius, maxRadius: 圆半径的最小值和最大值。

主函数

/* redball_detect.cpp
Description: the test example for detect the red ball.
Date: 2017/10/12
*/#include <iostream>
#include <opencv2/opencv.hpp>
using namespace std;
using namespace cv;#define SRC_WINDOW_NAME "redball"
#define MID_WINDOWNAME "redball_gray"Mat srcImage,  dstImage;
Mat channel[3];int main()
{// 原图像读取srcImage = imread("redball5.jpg", 1);imshow(SRC_WINDOW_NAME, srcImage);// 提取红色通道图像int g_nHm = 9; // 可利用滑动条调节split(srcImage, channel);channel[0] = channel[0].mul(.1*g_nHm); // B    (mul: per-element matrix multiplication)channel[1] = channel[1].mul(.1*g_nHm); // Gchannel[2] = channel[2] - channel[0] - channel[1]; // Rchannel[2] = 3 * channel[2];imshow(MID_WINDOWNAME, channel[2]);dstImage = channel[2];GaussianBlur(dstImage, dstImage, Size(9, 9), 2, 2); // 用于减少检测噪声// 霍夫圆检测vector<Vec3f> circles; // 3通道float型向量HoughCircles(dstImage, circles, CV_HOUGH_GRADIENT, 1, srcImage.rows / 5, 200, 16, 0, 0);// 结果显示for (size_t i = 0; i < circles.size(); i++){Point center(cvRound(circles[i][0]), cvRound(circles[i][1]));int radius = cvRound(circles[i][2]);circle(srcImage, center, 3, Scalar(0, 255, 0), -1, 8, 0);circle(srcImage, center, radius, Scalar(155, 50, 255), 3, 8, 0);cout << circles[i][0] << "\t" << circles[i][1] << "\t" << circles[i][2] << endl;}// cout << circles[0][0] << endl;imshow(SRC_WINDOW_NAME, srcImage);waitKey(0);return 0;
}

代码中的几点说明:
- 因为需要检测的红色球,所以提取RGB图像中的红色通道值更有利于检测;
- g_nHm是可调节参数,可以利用滑动条确定最好的值;
- GaussianBlur()函数用于抑制检测过程中的噪声,可以参考检测结果中使用GaussianBlur前后的对比。

结果显示

原图:


SrcImage

g_nHm=9时红色通道图像:


red_channel

不加高斯平滑的检测结果:


result_without_gaussian

加入高斯平滑的检测结果:


result_with_gaussian

这篇关于Opencv笔记:利用霍夫变换检测图像中的红球的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/535815

相关文章

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

C++ 检测文件大小和文件传输的方法示例详解

《C++检测文件大小和文件传输的方法示例详解》文章介绍了在C/C++中获取文件大小的三种方法,推荐使用stat()函数,并详细说明了如何设计一次性发送压缩包的结构体及传输流程,包含CRC校验和自动解... 目录检测文件的大小✅ 方法一:使用 stat() 函数(推荐)✅ 用法示例:✅ 方法二:使用 fsee

Python如何将OpenCV摄像头视频流通过浏览器播放

《Python如何将OpenCV摄像头视频流通过浏览器播放》:本文主要介绍Python如何将OpenCV摄像头视频流通过浏览器播放的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完... 目录方法1:使用Flask + MJPEG流实现代码使用方法优点缺点方法2:使用WebSocket传输视

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

Python中OpenCV与Matplotlib的图像操作入门指南

《Python中OpenCV与Matplotlib的图像操作入门指南》:本文主要介绍Python中OpenCV与Matplotlib的图像操作指南,本文通过实例代码给大家介绍的非常详细,对大家的学... 目录一、环境准备二、图像的基本操作1. 图像读取、显示与保存 使用OpenCV操作2. 像素级操作3.

C/C++中OpenCV 矩阵运算的实现

《C/C++中OpenCV矩阵运算的实现》本文主要介绍了C/C++中OpenCV矩阵运算的实现,包括基本算术运算(标量与矩阵)、矩阵乘法、转置、逆矩阵、行列式、迹、范数等操作,感兴趣的可以了解一下... 目录矩阵的创建与初始化创建矩阵访问矩阵元素基本的算术运算 ➕➖✖️➗矩阵与标量运算矩阵与矩阵运算 (逐元

C/C++的OpenCV 进行图像梯度提取的几种实现

《C/C++的OpenCV进行图像梯度提取的几种实现》本文主要介绍了C/C++的OpenCV进行图像梯度提取的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录预www.chinasem.cn备知识1. 图像加载与预处理2. Sobel 算子计算 X 和 Y

C/C++和OpenCV实现调用摄像头

《C/C++和OpenCV实现调用摄像头》本文主要介绍了C/C++和OpenCV实现调用摄像头,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录准备工作1. 打开摄像头2. 读取视频帧3. 显示视频帧4. 释放资源5. 获取和设置摄像头属性

c/c++的opencv图像金字塔缩放实现

《c/c++的opencv图像金字塔缩放实现》本文主要介绍了c/c++的opencv图像金字塔缩放实现,通过对原始图像进行连续的下采样或上采样操作,生成一系列不同分辨率的图像,具有一定的参考价值,感兴... 目录图像金字塔简介图像下采样 (cv::pyrDown)图像上采样 (cv::pyrUp)C++ O