Opencv笔记:利用霍夫变换检测图像中的红球

2023-12-25 14:18

本文主要是介绍Opencv笔记:利用霍夫变换检测图像中的红球,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

代码功能为从一副图像中检测红球,当然也可以针对视频的单帧图像进行检测,关于霍夫圆变换HoughCircles()函数及其原理主要参考了《opencv3编程入门》

HoughCircles()函数

函数原型:

void HoughCircles(InputArray image, outputArray circles, int method, double dp, double minDist, double param1=100, double param2=100, int minRadius=0, int maxRadius=0);

参数说明:
image: 输入图像,8位灰度单通道图像;
circles: 用于储存检测到的园的输出矢量,(x, y, radius);
method: 调用的检测方法,opencv中使用的是霍夫梯度法(CV_HOUGH_GRADIENT);
dp: 用于检测圆心的累加器图像的分辨率与输入图像之比的倒数;
minDist: 检测的不同圆的圆心之间 的最小距离;
param1, param2: 与检测方法相对应的参数;
minRadius, maxRadius: 圆半径的最小值和最大值。

主函数

/* redball_detect.cpp
Description: the test example for detect the red ball.
Date: 2017/10/12
*/#include <iostream>
#include <opencv2/opencv.hpp>
using namespace std;
using namespace cv;#define SRC_WINDOW_NAME "redball"
#define MID_WINDOWNAME "redball_gray"Mat srcImage,  dstImage;
Mat channel[3];int main()
{// 原图像读取srcImage = imread("redball5.jpg", 1);imshow(SRC_WINDOW_NAME, srcImage);// 提取红色通道图像int g_nHm = 9; // 可利用滑动条调节split(srcImage, channel);channel[0] = channel[0].mul(.1*g_nHm); // B    (mul: per-element matrix multiplication)channel[1] = channel[1].mul(.1*g_nHm); // Gchannel[2] = channel[2] - channel[0] - channel[1]; // Rchannel[2] = 3 * channel[2];imshow(MID_WINDOWNAME, channel[2]);dstImage = channel[2];GaussianBlur(dstImage, dstImage, Size(9, 9), 2, 2); // 用于减少检测噪声// 霍夫圆检测vector<Vec3f> circles; // 3通道float型向量HoughCircles(dstImage, circles, CV_HOUGH_GRADIENT, 1, srcImage.rows / 5, 200, 16, 0, 0);// 结果显示for (size_t i = 0; i < circles.size(); i++){Point center(cvRound(circles[i][0]), cvRound(circles[i][1]));int radius = cvRound(circles[i][2]);circle(srcImage, center, 3, Scalar(0, 255, 0), -1, 8, 0);circle(srcImage, center, radius, Scalar(155, 50, 255), 3, 8, 0);cout << circles[i][0] << "\t" << circles[i][1] << "\t" << circles[i][2] << endl;}// cout << circles[0][0] << endl;imshow(SRC_WINDOW_NAME, srcImage);waitKey(0);return 0;
}

代码中的几点说明:
- 因为需要检测的红色球,所以提取RGB图像中的红色通道值更有利于检测;
- g_nHm是可调节参数,可以利用滑动条确定最好的值;
- GaussianBlur()函数用于抑制检测过程中的噪声,可以参考检测结果中使用GaussianBlur前后的对比。

结果显示

原图:


SrcImage

g_nHm=9时红色通道图像:


red_channel

不加高斯平滑的检测结果:


result_without_gaussian

加入高斯平滑的检测结果:


result_with_gaussian

这篇关于Opencv笔记:利用霍夫变换检测图像中的红球的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/535815

相关文章

Python脚本轻松实现检测麦克风功能

《Python脚本轻松实现检测麦克风功能》在进行音频处理或开发需要使用麦克风的应用程序时,确保麦克风功能正常是非常重要的,本文将介绍一个简单的Python脚本,能够帮助我们检测本地麦克风的功能,需要的... 目录轻松检测麦克风功能脚本介绍一、python环境准备二、代码解析三、使用方法四、知识扩展轻松检测麦

Python学习笔记之getattr和hasattr用法示例详解

《Python学习笔记之getattr和hasattr用法示例详解》在Python中,hasattr()、getattr()和setattr()是一组内置函数,用于对对象的属性进行操作和查询,这篇文章... 目录1.getattr用法详解1.1 基本作用1.2 示例1.3 原理2.hasattr用法详解2.

OpenCV在Java中的完整集成指南分享

《OpenCV在Java中的完整集成指南分享》本文详解了在Java中集成OpenCV的方法,涵盖jar包导入、dll配置、JNI路径设置及跨平台兼容性处理,提供了图像处理、特征检测、实时视频分析等应用... 目录1. OpenCV简介与应用领域1.1 OpenCV的诞生与发展1.2 OpenCV的应用领域2

在Java中使用OpenCV实践

《在Java中使用OpenCV实践》用户分享了在Java项目中集成OpenCV4.10.0的实践经验,涵盖库简介、Windows安装、依赖配置及灰度图测试,强调其在图像处理领域的多功能性,并计划后续探... 目录前言一 、OpenCV1.简介2.下载与安装3.目录说明二、在Java项目中使用三 、测试1.测

基于Python开发一个图像水印批量添加工具

《基于Python开发一个图像水印批量添加工具》在当今数字化内容爆炸式增长的时代,图像版权保护已成为创作者和企业的核心需求,本方案将详细介绍一个基于PythonPIL库的工业级图像水印解决方案,有需要... 目录一、系统架构设计1.1 整体处理流程1.2 类结构设计(扩展版本)二、核心算法深入解析2.1 自

Linux系统性能检测命令详解

《Linux系统性能检测命令详解》本文介绍了Linux系统常用的监控命令(如top、vmstat、iostat、htop等)及其参数功能,涵盖进程状态、内存使用、磁盘I/O、系统负载等多维度资源监控,... 目录toppsuptimevmstatIOStatiotopslabtophtopdstatnmon

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

C++ 检测文件大小和文件传输的方法示例详解

《C++检测文件大小和文件传输的方法示例详解》文章介绍了在C/C++中获取文件大小的三种方法,推荐使用stat()函数,并详细说明了如何设计一次性发送压缩包的结构体及传输流程,包含CRC校验和自动解... 目录检测文件的大小✅ 方法一:使用 stat() 函数(推荐)✅ 用法示例:✅ 方法二:使用 fsee

Python如何将OpenCV摄像头视频流通过浏览器播放

《Python如何将OpenCV摄像头视频流通过浏览器播放》:本文主要介绍Python如何将OpenCV摄像头视频流通过浏览器播放的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完... 目录方法1:使用Flask + MJPEG流实现代码使用方法优点缺点方法2:使用WebSocket传输视

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解