【Datawhale x 财务学习笔记】用智谱清言的代码沙盒进行分析

本文主要是介绍【Datawhale x 财务学习笔记】用智谱清言的代码沙盒进行分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

体验网址

智谱清言:https://chatglm.cn/

prompt

帮我分析一下这个excel文件,从财务角度给出利润情况,并给出优化建议

体验结果

首先,我将查看上传的Excel文件的内容,以便了解其结构和包含的数据。然后,我将基于这些数据进行分析,并提供财务角度的利润情况和优化建议。让我们开始吧。

import pandas as pd# Load the Excel file
file_path = '/mnt/data/示例数据.xlsx'# Check the Excel file content
excel_data = pd.read_excel(file_path)# Display basic information and first few rows of the data
excel_data.info(), excel_data.head()

结果

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9959 entries, 0 to 9958
Data columns (total 20 columns):#   Column  Non-Null Count  Dtype         
---  ------  --------------  -----         0   行 ID    9959 non-null   int64         1   订单 ID   9959 non-null   object        2   订单日期    9959 non-null   datetime64[ns]3   发货日期    9959 non-null   datetime64[ns]4   邮寄方式    9959 non-null   object        5   客户 ID   9959 non-null   object        6   客户名称    9959 non-null   object        7   细分      9959 non-null   object        8   城市      9959 non-null   object        9   省/自治区   9959 non-null   object        10  国家/地区   9959 non-null   object        11  地区      9959 non-null   object        12  产品 ID   9959 non-null   object        13  类别      9959 non-null   object        14  子类别     9959 non-null   object        15  产品名称    9959 non-null   object        16  销售额     9959 non-null   float64       17  数量      9959 non-null   int64         18  折扣      9959 non-null   float64       19  利润      9959 non-null   float64       
dtypes: datetime64[ns](2), float64(3), int64(2), object(13)
memory usage: 1.5+ MB
(None,行 ID            订单 ID       订单日期       发货日期 邮寄方式     客户 ID 客户名称   细分  城市  \0     1  US-2021-1357144 2021-04-27 2021-04-29   二级  曾惠-14485   曾惠   公司  杭州   1     2  CN-2021-1973789 2021-06-15 2021-06-19  标准级  许安-10165   许安  消费者  内江   2     3  CN-2021-1973789 2021-06-15 2021-06-19  标准级  许安-10165   许安  消费者  内江   3     4  US-2021-3017568 2021-12-09 2021-12-13  标准级  宋良-17170   宋良   公司  镇江   4     5  CN-2020-2975416 2020-05-31 2020-06-02   二级  万兰-15730   万兰  消费者  汕头   省/自治区 国家/地区  地区            产品 ID    类别  子类别                产品名称       销售额  \0    浙江    中国  华东  办公用-用品-10002717  办公用品   用品      Fiskars 剪刀, 蓝色   129.696   1    四川    中国  西南  办公用-信封-10004832  办公用品   信封  GlobeWeis 搭扣信封, 红色   125.440   2    四川    中国  西南  办公用-装订-10001505  办公用品  装订机  Cardinal 孔加固材料, 回收    31.920   3    江苏    中国  华东  办公用-用品-10003746  办公用品   用品    Kleencut 开信刀, 工业   321.216   4    广东    中国  中南  办公用-器具-10003452  办公用品   器具  KitchenAid 搅拌机, 黑色  1375.920   数量   折扣       利润  0   2  0.4  -60.704  1   2  0.0   42.560  2   2  0.4    4.200  3   4  0.4  -27.104  4   3  0.0  550.200  )

该Excel文件包含9959条记录,每条记录有20个字段。这些字段如下:

行 ID: 唯一标识符
订单 ID: 订单的唯一标识符
订单日期: 订单的日期
发货日期: 发货的日期
邮寄方式: 邮寄方式(如一级、二级、标准级等)
客户 ID: 客户的唯一标识符
客户名称: 客户名称
细分: 客户细分的标识符
城市: 城市
省/自治区: 省份或自治区
国家/地区: 国家或地区
地区: 地区
产品 ID: 产品的唯一标识符
类别: 产品类别
子类别: 产品子类别
产品名称: 产品名称
销售额: 产品的销售额
数量: 产品的数量
折扣: 产品的折扣
利润: 产品的利润

为了分析财务情况,我们将关注以下几个字段:
订单日期
发货日期
产品名称
销售额
数量
折扣
利润

首先,我将检查这些字段中是否存在缺失值。

# Check for missing values in the columns of interest
missing_values = excel_data[['订单日期', '发货日期', '产品名称', '销售额', '数量', '折扣', '利润']].isnull().sum()missing_values

结果

订单日期    0
发货日期    0
产品名称    0
销售额     0
数量      0
折扣      0
利润      0
dtype: int64

所有与财务相关的字段都没有缺失值,这是一个好消息。接下来,我们将进行一些基本的数据分析,包括计算每种产品的总销售额、总利润等。
为了后续的分析,我建议创建一个新的数据透视表,其中包含每个产品及其相关销售额、数量、折扣和利润的总和。这将帮助我们更好地了解每个产品的贡献以及整个公司的财务状况。让我们创建这个数据透视表。

# Create a pivot table with total sales, quantity, discount, and profit for each product
pivot_table = excel_data.pivot_table(values=['销售额', '数量', '折扣', '利润'], index='产品名称', aggfunc={'销售额': 'sum', '数量': 'sum', '折扣': 'sum', '利润': 'sum'})# Reset index to make product name a column again
pivot_table = pivot_table.reset_index()pivot_table.head()

在这里插入图片描述
新的数据透视表已创建成功,其中包含了每个产品及其相关的销售额、数量、折扣和利润。
现在,让我们进行一些基本的数据分析:

  1. 计算所有产品的总销售额。
  2. 计算所有产品的总利润。
  3. 分析每个产品对总销售额和总利润的贡献。
  4. 根据销售额和利润对产品进行排序。

我们从上述数据透视表中提取这些信息。

# Calculate total sales and profit for all products
total_sales = pivot_table['销售额'].sum()
total_profit = pivot_table['利润'].sum()# Calculate contribution of each product to total sales and profit
product_contribution = pivot_table[['销售额', '利润']] / total_sales# Sort products by sales and profit
sorted_by_sales = pivot_table.sort_values(by='销售额', ascending=False)
sorted_by_profit = pivot_table.sort_values(by='利润', ascending=False)total_sales, total_profit, product_contribution.head(), sorted_by_sales.head(), sorted_by_profit.head()

结果

(16068954.125,2147538.925,销售额        利润0  0.000051 -0.0000091  0.000030  0.0000052  0.000043 -0.0000033  0.000039  0.0000114  0.000345  0.000109,产品名称         利润   折扣  数量         销售额1755               摩托罗拉 充电器, 混合尺寸  -4218.536  1.2  45  115078.264783   Harbour Creations 扶手椅, 每套两件  11075.624  1.3  51  102817.484996             KitchenAid 炉灶, 黑色  32930.016  0.8  41   99410.6961255                 Safco 书库, 传统   9090.144  2.0  59   94952.844782     Harbour Creations 扶手椅, 可调  34878.900  1.1  48   93537.780,产品名称         利润   折扣  数量        销售额782   Harbour Creations 扶手椅, 可调  34878.900  1.1  48  93537.780996           KitchenAid 炉灶, 黑色  32930.016  0.8  41  99410.6961911              诺基亚 充电器, 混合尺寸  30469.600  0.4  26  71557.9201236            SAFCO 扶手椅, 每套两件  28928.704  2.0  41  75950.7841164        Office Star 扶手椅, 可调  28310.744  1.0  33  66665.984)

以下是对数据的一些观察和分析:

  1. 总销售额: 所有产品的总销售额为 $16,068,954.125。
  2. 总利润: 所有产品的总利润为 $2,147,538.925。
  3. 产品贡献: 每个产品对总销售额和总利润的贡献可以从数据透视表中看出。例如,产品“摩托罗拉 充电器, 混合尺寸”对总销售额的贡献最大,而产品“Acco 孔加固材料, 回收”对总利润的贡献最大(但这是由于其高销售额和高成本共同作用的结果)。
  4. 排序: 根据销售额和利润,我们已经对产品进行了排序。销售额最高的产品是“摩托罗拉 充电器, 混合尺寸”,而利润最高的产品是“Harbour Creations 扶手椅, 可调”。

优化建议:

  1. 产品组合优化: 公司可能需要考虑调整产品组合,以提高总利润。这可能包括引入更多高利润产品,或减少低利润产品的生产。
  2. 成本控制: 考虑到一些产品的利润率较低,公司可能需要寻找方法来降低生产成本,以便在保持现有价格水平的同时提高利润。
    定价策略: 公司可能需要重新考虑其定价策略,以确保产品价格能够覆盖生产成本,并且仍然具有竞争力。
  3. 市场拓展: 考虑到一些产品在市场上的表现良好,公司可能需要考虑进一步拓展市场,以增加销售额和利润。
  4. 供应商谈判: 公司可能需要与供应商进行谈判,以争取更好的价格和服务条款,以进一步降低成本和提高利润。

这些只是基于现有数据的初步分析。更多的深入分析和建议可能需要进一步的数据和市场研究来确定。

这篇关于【Datawhale x 财务学习笔记】用智谱清言的代码沙盒进行分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/533846

相关文章

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的

Python 基于http.server模块实现简单http服务的代码举例

《Python基于http.server模块实现简单http服务的代码举例》Pythonhttp.server模块通过继承BaseHTTPRequestHandler处理HTTP请求,使用Threa... 目录测试环境代码实现相关介绍模块简介类及相关函数简介参考链接测试环境win11专业版python

Python从Word文档中提取图片并生成PPT的操作代码

《Python从Word文档中提取图片并生成PPT的操作代码》在日常办公场景中,我们经常需要从Word文档中提取图片,并将这些图片整理到PowerPoint幻灯片中,手动完成这一任务既耗时又容易出错,... 目录引言背景与需求解决方案概述代码解析代码核心逻辑说明总结引言在日常办公场景中,我们经常需要从 W

使用Spring Cache本地缓存示例代码

《使用SpringCache本地缓存示例代码》缓存是提高应用程序性能的重要手段,通过将频繁访问的数据存储在内存中,可以减少数据库访问次数,从而加速数据读取,:本文主要介绍使用SpringCac... 目录一、Spring Cache简介核心特点:二、基础配置1. 添加依赖2. 启用缓存3. 缓存配置方案方案

Nginx中配置使用非默认80端口进行服务的完整指南

《Nginx中配置使用非默认80端口进行服务的完整指南》在实际生产环境中,我们经常需要将Nginx配置在其他端口上运行,本文将详细介绍如何在Nginx中配置使用非默认端口进行服务,希望对大家有所帮助... 目录一、为什么需要使用非默认端口二、配置Nginx使用非默认端口的基本方法2.1 修改listen指令

MySQL的配置文件详解及实例代码

《MySQL的配置文件详解及实例代码》MySQL的配置文件是服务器运行的重要组成部分,用于设置服务器操作的各种参数,下面:本文主要介绍MySQL配置文件的相关资料,文中通过代码介绍的非常详细,需要... 目录前言一、配置文件结构1.[mysqld]2.[client]3.[mysql]4.[mysqldum

Python多线程实现大文件快速下载的代码实现

《Python多线程实现大文件快速下载的代码实现》在互联网时代,文件下载是日常操作之一,尤其是大文件,然而,网络条件不稳定或带宽有限时,下载速度会变得很慢,本文将介绍如何使用Python实现多线程下载... 目录引言一、多线程下载原理二、python实现多线程下载代码说明:三、实战案例四、注意事项五、总结引