基于DCGAN的动漫头像生成神经网络实现

2023-12-24 23:32

本文主要是介绍基于DCGAN的动漫头像生成神经网络实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、前言

1、什么是DCGAN?

2、DCGAN的TensorFlow实现

3、什么是转置卷积?

4、转置卷积的Tensorflow实现

5、Batch Normalization解读

本文假设读者已经了解GAN及CNN的基本原理实现,如不清楚可参考以下文章:

基于GAN的的mnist训练集图片生成神经网络实现

基于CNN的验证码识别神经网络实现

二、实战

1、训练数据处理

(1)数据源:百度云盘 提取码:g5qa

(2)创建一个生成器

class Avatar:def __init__(self):self.data_name = 'faces'self.source_shape = (96, 96, 3)self.resize_shape = (48, 48, 3)self.crop = Trueself.img_shape = self.source_shape if not self.crop else self.resize_shapeself.img_list = self._get_img_list()self.batch_size = 64self.batch_shape = (self.batch_size, ) + self.img_shapeself.chunk_size = len(self.img_list) // self.batch_sizedef _get_img_list(self):path = os.path.join(os.getcwd(), self.data_name, '*.jpg')return glob(path)def _get_img(self, name):assert name in self.img_listimg = scipy.misc.imread(name).astype(np.float32)assert img.shape == self.source_shapereturn self._resize(img) if self.crop else imgdef _resize(self, img):h, w = img.shape[:2]resize_h, resize_w = self.resize_shape[:2]crop_h, crop_w = self.source_shape[:2]j = int(round((h - crop_h) / 2.))i = int(round((w - crop_w) / 2.))cropped_image = scipy.misc.imresize(img[j:j + crop_h, i:i + crop_w], [resize_h, resize_w])return np.array(cropped_image) / 127.5 - 1.@staticmethoddef save_img(image, path):scipy.misc.imsave(path, image)return Truedef batches(self):start = 0end = self.batch_sizefor _ in range(self.chunk_size):name_list = self.img_list[start:end]imgs = [self._get_img(name) for name in name_list]batches = np.zeros(self.batch_shape)batches[::] = imgsyield batchesstart += self.batch_sizeend += self.batch_size
读取本地图片数据并创建一个生成器,作为后续模型数据源

2.模型参数定义

    def __init__(self):self.avatar = Avatar()# 真实图片shape (height, width, depth)self.img_shape = self.avatar.img_shape# 一个batch的图片向量shape (batch, height, width, depth)self.batch_shape = self.avatar.batch_shape# 一个batch包含图片数量self.batch_size = self.avatar.batch_size# batch数量self.chunk_size = self.avatar.chunk_size# 噪音图片sizeself.noise_img_size = 100# 卷积转置输出通道数量self.gf_size = 64# 卷积输出通道数量self.df_size = 64# 训练循环次数self.epoch_size = 50# 学习率self.learning_rate = 0.0002# 优化指数衰减率self.beta1 = 0.5# 生成图片数量self.sample_size = 64
3、输入定义

        # 真实图片real_imgs = tf.placeholder(tf.float32, self.batch_shape, name='real_images')# 噪声图片noise_imgs = tf.placeholder(tf.float32, [None, self.noise_img_size], name='noise_images')
我们利用随机的噪音输入来生成图片

4、生成器

    def generator(self, noise_imgs, train=True):with tf.variable_scope('generator'):# 分别对应每个layer的height, widths_h, s_w, _ = self.img_shapes_h2, s_w2 = self.conv_out_size_same(s_h, 2), self.conv_out_size_same(s_w, 2)s_h4, s_w4 = self.conv_out_size_same(s_h2, 2), self.conv_out_size_same(s_w2, 2)s_h8, s_w8 = self.conv_out_size_same(s_h4, 2), self.conv_out_size_same(s_w4, 2)s_h16, s_w16 = self.conv_out_size_same(s_h8, 2), self.conv_out_size_same(s_w8, 2)# layer 0# 对输入噪音图片进行线性变换z, h0_w, h0_b = self.linear(noise_imgs, self.gf_size*8*s_h16*s_w16)# reshape为合适的输入层格式h0 = tf.reshape(z, [-1, s_h16, s_w16, self.gf_size * 8])# 对数据进行归一化处理 加快收敛速度h0 = self.batch_normalizer(h0, train=train, name='g_bn0')# 激活函数h0 = tf.nn.relu(h0)# layer 1# 卷积转置进行上采样h1, h1_w, h1_b = self.deconv2d(h0, [self.batch_size, s_h8, s_w8, self.gf_size*4], name='g_h1')h1 = self.batch_normalizer(h1, train=train, name='g_bn1')h1 = tf.nn.relu(h1)# layer 2h2, h2_w, h2_b = self.deconv2d(h1, [self.batch_size, s_h4, s_w4, self.gf_size*2], name='g_h2')h2 = self.batch_normalizer(h2, train=train, name='g_bn2')h2 = tf.nn.relu(h2)# layer 3h3, h3_w, h3_b = self.deconv2d(h2, [self.batch_size, s_h2, s_w2, self.gf_size*1], name='g_h3')h3 = self.batch_normalizer(h3, train=train, name='g_bn3')h3 = tf.nn.relu(h3)# layer 4h4, h4_w, h4_b = self.deconv2d(h3, self.batch_shape, name='g_h4')return tf.nn.tanh(h4)
DCGAN的生成器为卷积网络,使用转置卷积进行上采样,去除pooling层,利用batch normalization加快收敛速度。

5、判别器

    def discriminator(self, real_imgs, reuse=False):with tf.variable_scope("discriminator", reuse=reuse):# layer 0# 卷积操作h0 = self.conv2d(real_imgs, self.df_size, name='d_h0_conv')# 激活函数h0 = self.lrelu(h0)# layer 1h1 = self.conv2d(h0, self.df_size*2, name='d_h1_conv')h1 = self.batch_normalizer(h1, name='d_bn1')h1 = self.lrelu(h1)# layer 2h2 = self.conv2d(h1, self.df_size*4, name='d_h2_conv')h2 = self.batch_normalizer(h2, name='d_bn2')h2 = self.lrelu(h2)# layer 3h3 = self.conv2d(h2, self.df_size*8, name='d_h3_conv')h3 = self.batch_normalizer(h3, name='d_bn3')h3 = self.lrelu(h3)# layer 4h4, _, _ = self.linear(tf.reshape(h3, [self.batch_size, -1]), 1, name='d_h4_lin')return tf.nn.sigmoid(h4), h4
DCGAN的判别器为卷积网络,这里使用卷积操作对图像进行特征提取识别。

6、损失和优化

    @staticmethoddef loss_graph(real_logits, fake_logits):# 生成器图片loss# 生成器希望判别器判断出来的标签为1gen_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=fake_logits, labels=tf.ones_like(fake_logits)))# 判别器识别生成器图片loss# 判别器希望识别出来的标签为0fake_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=fake_logits, labels=tf.zeros_like(fake_logits)))# 判别器识别真实图片loss# 判别器希望识别出来的标签为1real_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=real_logits, labels=tf.ones_like(real_logits)))# 判别器总lossdis_loss = tf.add(fake_loss, real_loss)return gen_loss, fake_loss, real_loss, dis_loss@staticmethoddef optimizer_graph(gen_loss, dis_loss, learning_rate, beta1):# 所有定义变量train_vars = tf.trainable_variables()# 生成器变量gen_vars = [var for var in train_vars if var.name.startswith('generator')]# 判别器变量dis_vars = [var for var in train_vars if var.name.startswith('discriminator')]# optimizer# 生成器与判别器作为两个网络需要分别优化gen_optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate, beta1=beta1).minimize(gen_loss, var_list=gen_vars)dis_optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate, beta1=beta1).minimize(dis_loss, var_list=dis_vars)return gen_optimizer, dis_optimizer
7、开始训练

        # 开始训练saver = tf.train.Saver()step = 0# 指定占用GPU比例# tensorflow默认占用全部GPU显存 防止在机器显存被其他程序占用过多时可能在启动时报错gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.8)with tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) as sess:sess.run(tf.global_variables_initializer())for epoch in range(self.epoch_size):batches = self.avatar.batches()for batch_imgs in batches:# generator的输入噪声noises = np.random.uniform(-1, 1, size=(self.batch_size, self.noise_img_size)).astype(np.float32)# 优化_ = sess.run(dis_optimizer, feed_dict={real_imgs: batch_imgs, noise_imgs: noises})_ = sess.run(gen_optimizer, feed_dict={noise_imgs: noises})_ = sess.run(gen_optimizer, feed_dict={noise_imgs: noises})step += 1print(datetime.now().strftime('%c'), epoch, step)
8、结果


跑了50个循环大概用了5个小时,笔者GPU比较一般,就不继续训练了。可以看到,到这里已经生成了不错的效果。

三、其他

具体代码可以在我的github上找到:https://github.com/lpty/tensorflow_tutorial








这篇关于基于DCGAN的动漫头像生成神经网络实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/533512

相关文章

Java实现本地缓存的常用方案介绍

《Java实现本地缓存的常用方案介绍》本地缓存的代表技术主要有HashMap,GuavaCache,Caffeine和Encahche,这篇文章主要来和大家聊聊java利用这些技术分别实现本地缓存的方... 目录本地缓存实现方式HashMapConcurrentHashMapGuava CacheCaffe

SpringBoot整合Sa-Token实现RBAC权限模型的过程解析

《SpringBoot整合Sa-Token实现RBAC权限模型的过程解析》:本文主要介绍SpringBoot整合Sa-Token实现RBAC权限模型的过程解析,本文给大家介绍的非常详细,对大家的学... 目录前言一、基础概念1.1 RBAC模型核心概念1.2 Sa-Token核心功能1.3 环境准备二、表结

Python实现一键PDF转Word(附完整代码及详细步骤)

《Python实现一键PDF转Word(附完整代码及详细步骤)》pdf2docx是一个基于Python的第三方库,专门用于将PDF文件转换为可编辑的Word文档,下面我们就来看看如何通过pdf2doc... 目录引言:为什么需要PDF转Word一、pdf2docx介绍1. pdf2docx 是什么2. by

使用Python实现网页表格转换为markdown

《使用Python实现网页表格转换为markdown》在日常工作中,我们经常需要从网页上复制表格数据,并将其转换成Markdown格式,本文将使用Python编写一个网页表格转Markdown工具,需... 在日常工作中,我们经常需要从网页上复制表格数据,并将其转换成Markdown格式,以便在文档、邮件或

Python使用pynput模拟实现键盘自动输入工具

《Python使用pynput模拟实现键盘自动输入工具》在日常办公和软件开发中,我们经常需要处理大量重复的文本输入工作,所以本文就来和大家介绍一款使用Python的PyQt5库结合pynput键盘控制... 目录概述:当自动化遇上可视化功能全景图核心功能矩阵技术栈深度效果展示使用教程四步操作指南核心代码解析

SpringBoot实现文件记录日志及日志文件自动归档和压缩

《SpringBoot实现文件记录日志及日志文件自动归档和压缩》Logback是Java日志框架,通过Logger收集日志并经Appender输出至控制台、文件等,SpringBoot配置logbac... 目录1、什么是Logback2、SpringBoot实现文件记录日志,日志文件自动归档和压缩2.1、

Python实现pdf电子发票信息提取到excel表格

《Python实现pdf电子发票信息提取到excel表格》这篇文章主要为大家详细介绍了如何使用Python实现pdf电子发票信息提取并保存到excel表格,文中的示例代码讲解详细,感兴趣的小伙伴可以跟... 目录应用场景详细代码步骤总结优化应用场景电子发票信息提取系统主要应用于以下场景:企业财务部门:需

基于Python实现智能天气提醒助手

《基于Python实现智能天气提醒助手》这篇文章主要来和大家分享一个实用的Python天气提醒助手开发方案,这个工具可以方便地集成到青龙面板或其他调度框架中使用,有需要的小伙伴可以参考一下... 目录项目概述核心功能技术实现1. 天气API集成2. AI建议生成3. 消息推送环境配置使用方法完整代码项目特点

spring-gateway filters添加自定义过滤器实现流程分析(可插拔)

《spring-gatewayfilters添加自定义过滤器实现流程分析(可插拔)》:本文主要介绍spring-gatewayfilters添加自定义过滤器实现流程分析(可插拔),本文通过实例图... 目录需求背景需求拆解设计流程及作用域逻辑处理代码逻辑需求背景公司要求,通过公司网络代理访问的请求需要做请

使用Python获取JS加载的数据的多种实现方法

《使用Python获取JS加载的数据的多种实现方法》在当今的互联网时代,网页数据的动态加载已经成为一种常见的技术手段,许多现代网站通过JavaScript(JS)动态加载内容,这使得传统的静态网页爬取... 目录引言一、动态 网页与js加载数据的原理二、python爬取JS加载数据的方法(一)分析网络请求1