Webots实现大疆Mavic2pro无人机定点飞行

2023-12-24 17:45

本文主要是介绍Webots实现大疆Mavic2pro无人机定点飞行,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档

文章目录

  • 前言
  • 一、将无人机当成一个对象
    • 1.1定义无人机相关属性
    • 1.2定义用于控制无人机运动的代码
    • 1.3主函数实现无人机的点位固定和飞行检测
  • 二、用键盘控制测试代码
  • 三、效果展示
  • 四、注意点


前言

由于项目要求,现在需要做一个能够实现无人机根据事先给定的点位实现定点飞行,这里由于webots的跨平台性,考虑使用webots进行仿真

一、将无人机当成一个对象

1.1定义无人机相关属性

由于无人机有pitch、yaw、roll三个属性,分别对应前后运动、左右偏航和左右横滚、这里定义相关的所有属性用于控制。
同时定义相应的用于控制运动的函数

1.2定义用于控制无人机运动的代码

import math
import time
from controller import Robot, Camera, Compass, GPS, Gyro, InertialUnit, Keyboard, LED, Motor# 自定义无人机类,继承机器人父类
class UAV(Robot):timestep = 0# Constants, empirically found.k_vertical_thrust = 68.5  # with this thrust, the drone lifts.k_vertical_offset = 0.6   # Vertical offset where the robot actually targets to stabilize itself.k_vertical_p = 3.0        # P constant of the vertical PID.k_roll_p = 50.0           # P constant of the roll PID.k_pitch_p = 30.0          # P constant of the pitch PID.# 初始化变量def __init__(self):# Get and enable devices.self.camera = Camera("camera")self.camera.enable(timestep)self.front_left_led = LED("front left led")self.front_right_led = LED("front right led")self.imu = InertialUnit("inertial unit")self.imu.enable(timestep)self.gps = GPS("gps")self.gps.enable(timestep)self.compass = Compass("compass")self.compass.enable(timestep)# 检测角速度self.gyro = Gyro("gyro")self.gyro.enable(timestep)# keyboard = Keyboard()# keyboard.enable(timestep)# 横滚检测器self.camera_roll_motor = Motor("camera roll")# 前后俯仰检测器self.camera_pitch_motor = Motor("camera pitch")# 用于控制无人机平稳飞行的变量self.roll_disturbance = 0.0self.pitch_disturbance = 0.0self.yaw_disturbance = 0.0# 设置初始目标噶度self.target_altitude = 10.0# Get propeller motors and set them to velocity mode.self.front_left_motor = Motor("front left propeller")self.front_right_motor = Motor("front right propeller")self.rear_left_motor = Motor("rear left propeller")self.rear_right_motor = Motor("rear right propeller")# 将所有的驱动器保存到一个数组中self.motors = [self.front_left_motor, self.front_right_motor, self.rear_left_motor, self.rear_right_motor]# 前进def forward():self.pitch_disturbance = 2.0# 后退def backward():self.pitch_disturbance = -2.0# 向右运动def right():self.yaw_disturbance = 1.3# 向左运动def left():self.yaw_disturbance = -1.3# 向右横滚def roll_right():self.roll_disturbance = -1.0# 向左横滚def roll_left():self.roll_disturbance = 1.0# 上升def up():self.target_altitude += 0.05print("target altitude:", target_altitude, "[m]")# 下降def down():self.target_altitude -= 0.05print("target altitude:", target_altitude, "[m]")# 获取无人机当前位置def getPosition():self.roll = self.imu.getRollPitchYaw()[0] + math.pi / 2.0self.pitch = self.imu.getRollPitchYaw()[1]self.altitude = self.gps.getValues()[1]# 获取角速度self.roll_acceleration = self.gyro.getValues()[0]self.pitch_acceleration = self.gyro.getValues()[1]# Blink the front LEDs alternatively with a 1 second rate.self.led_state = int(time) % 2self.front_left_led.set(led_state)self.front_right_led.set(1 - led_state)# 根据相关参数进行运动控制def Move():# Stabilize the Camera by actuating the camera motors according to the gyro feedback.self.camera_roll_motor.setPosition(-0.115 * self.roll_acceleration)self.camera_pitch_motor.setPosition(-0.1 * self.pitch_acceleration)# Compute the roll, pitch, and yaw errors.roll_input = self.k_roll_p * CLAMP(self.roll, -1.0, 1.0) + self.roll_acceleration + self.roll_disturbancepitch_input = self.k_pitch_p * CLAMP(self.pitch, -1.0, 1.0) - self.pitch_acceleration + self.pitch_disturbanceyaw_input = self.yaw_disturbanceclamped_difference_altitude = CLAMP(self.target_altitude - self.altitude + self.k_vertical_offset, -1.0, 1.0)vertical_input = self.k_vertical_p * pow(clamped_difference_altitude, 3.0)# Accute the motor taking into consideration all the computed inputs.front_left_motor_input = self.k_vertical_thrust + vertical_input - roll_input - pitch_input + yaw_inputfront_right_motor_input = self.k_vertical_thrust + vertical_input + roll_input - pitch_input - yaw_inputrear_left_motor_input = self.k_vertical_thrust + vertical_input - roll_input + pitch_input - yaw_inputrear_right_motor_input = self.k_vertical_thrust + vertical_input + roll_input + pitch_input + yaw_inputself.front_left_motor.setVelocity(front_left_motor_input)self.front_right_motor.setVelocity(-front_right_motor_input)self.rear_left_motor.setVelocity(-rear_left_motor_input)self.rear_right_motor.setVelocity(rear_right_motor_input)# 辅助函数
def CLAMP(value, low, high):return max(low, min(value, high))

1.3主函数实现无人机的点位固定和飞行检测

将主函数声明成控制器就可以了

from Uav import Uav
def main():uav = Uav()timestep = int(uav.getBasicTimeStep())uav.timestep = timestepkeyboard = Keyboard()keyboard.enable(timestep)while uav.step(timestep) != -1:key = keyboard.getKey()uav.roll_disturbance = 0.0uav.pitch_disturbance = 0.0uav.yaw_disturbance = 0.0while key > 0:# 上升函数if key == Keyboard.UP:uav.forward()elif key == Keyboard.DOWN:uav.backward()elif key == Keyboard.RIGHT:uav.right()elif key == Keyboard.LEFT:uav.left()elif key == (Keyboard.SHIFT + Keyboard.RIGHT):uav.roll_right()elif key == (Keyboard.SHIFT + Keyboard.LEFT):uav.roll_left()elif key == (Keyboard.SHIFT + Keyboard.UP):uav.up()elif key == (Keyboard.SHIFT + Keyboard.DOWN):uav.down()key = keyboard.getKey()uav.getPosition()uav.Move()wb_robot_cleanup();if __name__ == "__main__" :main()

二、用键盘控制测试代码

由于webots默认给的是通过C++代码实现键盘对无人机进行控制,然而开发使用的多是python,这里给出根据原本C++代码改写的python控制代码,直接新建成一个控制器然后在webots中选择这个.py文件作为控制器就可以了,记得放到controler文件夹中。

import math
import time
from controller import Robot, Camera, Compass, GPS, Gyro, InertialUnit, Keyboard, LED, Motordef CLAMP(value, low, high):return max(low, min(value, high))def main():# 创建一个机器人对象robot = Robot()# 每个物理动作的持续时间timestep = int(robot.getBasicTimeStep())# Get and enable devices.camera = Camera("camera")camera.enable(timestep)front_left_led = LED("front left led")front_right_led = LED("front right led")imu = InertialUnit("inertial unit")imu.enable(timestep)gps = GPS("gps")gps.enable(timestep)compass = Compass("compass")compass.enable(timestep)# 检测角速度gyro = Gyro("gyro")gyro.enable(timestep)keyboard = Keyboard()keyboard.enable(timestep)# 横滚检测器camera_roll_motor = Motor("camera roll")# 前后俯仰检测器camera_pitch_motor = Motor("camera pitch")# Get propeller motors and set them to velocity mode.front_left_motor = Motor("front left propeller")front_right_motor = Motor("front right propeller")rear_left_motor = Motor("rear left propeller")rear_right_motor = Motor("rear right propeller")motors = [front_left_motor, front_right_motor, rear_left_motor, rear_right_motor]for motor in motors:# 初始化无限旋转的运动motor.setPosition(float('inf'))# 启动!motor.setVelocity(1.0)# Display the welcome message.print("Start the drone...")# Wait one second.while robot.step(timestep) != -1:if robot.getTime() > 1.0:break# Display manual control message.print("You can control the drone with your computer keyboard:")print("- 'up': move forward.")print("- 'down': move backward.")print("- 'right': turn right.")print("- 'left': turn left.")print("- 'shift + up': increase the target altitude.")print("- 'shift + down': decrease the target altitude.")print("- 'shift + right': strafe right.")print("- 'shift + left': strafe left.")# Constants, empirically found.k_vertical_thrust = 68.5  # with this thrust, the drone lifts.k_vertical_offset = 0.6   # Vertical offset where the robot actually targets to stabilize itself.k_vertical_p = 3.0        # P constant of the vertical PID.k_roll_p = 50.0           # P constant of the roll PID.k_pitch_p = 30.0          # P constant of the pitch PID.# Variables.# 设置初始高度target_altitude = 1.0  # The target altitude. Can be changed by the user.# Main loop# - perform simulation steps until Webots is stopping the controllerwhile robot.step(timestep) != -1:time = robot.getTime()# Retrieve robot position using the sensors.roll = imu.getRollPitchYaw()[0] + math.pi / 2.0pitch = imu.getRollPitchYaw()[1]altitude = gps.getValues()[1]# 获取角速度roll_acceleration = gyro.getValues()[0]pitch_acceleration = gyro.getValues()[1]# Blink the front LEDs alternatively with a 1 second rate.led_state = int(time) % 2front_left_led.set(led_state)front_right_led.set(1 - led_state)# Stabilize the Camera by actuating the camera motors according to the gyro feedback.camera_roll_motor.setPosition(-0.115 * roll_acceleration)camera_pitch_motor.setPosition(-0.1 * pitch_acceleration)# Transform the keyboard input to disturbances on the stabilization algorithm.roll_disturbance = 0.0pitch_disturbance = 0.0yaw_disturbance = 0.0key = keyboard.getKey()while key > 0:# 上升函数if key == Keyboard.UP:pitch_disturbance = 2.0elif key == Keyboard.DOWN:pitch_disturbance = -2.0elif key == Keyboard.RIGHT:yaw_disturbance = 1.3elif key == Keyboard.LEFT:yaw_disturbance = -1.3elif key == (Keyboard.SHIFT + Keyboard.RIGHT):roll_disturbance = -1.0elif key == (Keyboard.SHIFT + Keyboard.LEFT):roll_disturbance = 1.0elif key == (Keyboard.SHIFT + Keyboard.UP):target_altitude += 0.05print("target altitude:", target_altitude, "[m]")elif key == (Keyboard.SHIFT + Keyboard.DOWN):target_altitude -= 0.05print("target altitude:", target_altitude, "[m]")key = keyboard.getKey()# Compute the roll, pitch, and yaw errors.roll_input = k_roll_p * CLAMP(roll, -1.0, 1.0) + roll_acceleration + roll_disturbancepitch_input = k_pitch_p * CLAMP(pitch, -1.0, 1.0) - pitch_acceleration + pitch_disturbanceyaw_input = yaw_disturbanceclamped_difference_altitude = CLAMP(target_altitude - altitude + k_vertical_offset, -1.0, 1.0)vertical_input = k_vertical_p * pow(clamped_difference_altitude, 3.0)# Accute the motor taking into consideration all the computed inputs.front_left_motor_input = k_vertical_thrust + vertical_input - roll_input - pitch_input + yaw_inputfront_right_motor_input = k_vertical_thrust + vertical_input + roll_input - pitch_input - yaw_inputrear_left_motor_input = k_vertical_thrust + vertical_input - roll_input + pitch_input - yaw_inputrear_right_motor_input = k_vertical_thrust + vertical_input + roll_input + pitch_input + yaw_inputfront_left_motor.setVelocity(front_left_motor_input)front_right_motor.setVelocity(-front_right_motor_input)rear_left_motor.setVelocity(-rear_left_motor_input)rear_right_motor.setVelocity(rear_right_motor_input)wb_robot_cleanup()if __name__ == "__main__":main()

三、效果展示

用python控制器实现键盘控制无人机运动

四、注意点

  1. Webots中不支持到其他库,所以理论上应该都写在一个文件夹中,如果想要写在不用的文件夹中,需要
  2. 改变控制器以后记得重新保存一份世界文件。

这篇关于Webots实现大疆Mavic2pro无人机定点飞行的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/532600

相关文章

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

Linux挂载linux/Windows共享目录实现方式

《Linux挂载linux/Windows共享目录实现方式》:本文主要介绍Linux挂载linux/Windows共享目录实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录文件共享协议linux环境作为服务端(NFS)在服务器端安装 NFS创建要共享的目录修改 NFS 配

通过React实现页面的无限滚动效果

《通过React实现页面的无限滚动效果》今天我们来聊聊无限滚动这个现代Web开发中不可或缺的技术,无论你是刷微博、逛知乎还是看脚本,无限滚动都已经渗透到我们日常的浏览体验中,那么,如何优雅地实现它呢?... 目录1. 早期的解决方案2. 交叉观察者:IntersectionObserver2.1 Inter

Spring Gateway动态路由实现方案

《SpringGateway动态路由实现方案》本文主要介绍了SpringGateway动态路由实现方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随... 目录前沿何为路由RouteDefinitionRouteLocator工作流程动态路由实现尾巴前沿S