用Python遍历文件夹下的所有文件并进行数据处理(Pathlib简介)

2023-12-24 17:08

本文主要是介绍用Python遍历文件夹下的所有文件并进行数据处理(Pathlib简介),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在数据分析的日常工作中,我们可能会经常需要处理这样的问题:将一个或多个文件夹下的文件中的数据进行分析、处理、整合。这些文件通常是相似的或是同类别的,比如我们有多个月份的销售信息,每个月份的数据分别存在一个excel文档中;多个类别的销售信息,每个类的数据分别存在一个excel文档中等等。像是如图中所示:

在当前文件夹中存在“files”文件夹,里面是我们将要分析的数据,在该文件夹目录下又有如下四个文件夹,我们可以看作是四个大类的数据:

这四个文件夹当中就分别存放着所对应的数据,随便打开其中一个文件夹,数据文件如图所示:

 其中每个文件的内容大致是相同:

所有文件共有128个,每个文件中条目数在几百行,我们需要分别对这些文件中的数据进行分析,求出每个文件中所属类目起始日期、终止日期、平均转化率、平均客单价,然后汇总到一起输出一份数据分析报告。如果用excel来一个个处理的话需要处理128次,想想就觉得费力啊!那么这个时候用上我们的pandas就再合适不过了。这个时候有些朋友会有些疑惑,我们该如何遍历这些文件并读取数据呢?本文就通过os库以及pathlib库为大家讲解,并在最后重点介绍一下pathlib。

首先导入我们需要使用到的库:

import pandas as pd
import numpy as np
import os
from pathlib import Path
import time

设置自己存放文件的根目录:

file_path = "/Users/***/jupyter_notebook/Python_file_processing/files"

先用os的方法,这里我们使用os.walk()来遍历文件名:

可以看到每次遍历都包含当前文件夹的根路径该文件夹下的文件夹该文件夹下的所有文件列表。通过代码我们可以轻松地将所有文件名整理到一个列表中:

# 存放所有文件名
file_list = []
# 存放每个子文件夹下所对应的文件名
file_dict = {}
for iroot, idirs, ifiles in os.walk(file_path):if not idirs:ifiles.remove('.DS_Store')file_list.extend(ifiles)file_dict[iroot] = ifiles

因为pandas读取文件需要绝对路径,所以我们建立一个根路径与文件名对应的字典,之后拼凑成绝对路径。file_dict如下图所示:

这样我们就可以通过dict.items()来拼接文件的绝对路径了,然后遍历读取文件,分析我们所需要的指标:

start_time = []
end_time = []
conversion_mean = []
category = []
unit_price_mean = []start = time.time()
# 遍历所有文件,拼接路径
for k, v in file_dict.items():for i in v:file_name = os.path.join(k, i)file = pd.read_excel(file_name)start_time.append(file['日期'].min())end_time.append(file['日期'].max())conversion_mean.append(file['转化率'].mean())category.append(file['三级类目'].unique()[0])# 文件中有inf值unit_price_mean.append(file['客单价'].replace(np.inf, np.nan).dropna().mean())output_file = pd.DataFrame({'起始日期': start_time,'终止日期': end_time,'平均转换率': conversion_mean,'所属类目': category,'平均客单价': unit_price_mean})
cost = round(time.time() - start, 2)
print(f'处理数据共用时{cost}秒')

最后输出分析报告,共128个条目:

接下来我们用pathlib来遍历文件,可能比os要方便一些。

首先设置文件目录:

p = Path(file_path)

让我们看一下通过pathlib的方法是如何遍历的:

# 所有以xlsx结尾的文件
for file in p.rglob('*.xlsx'):print(file)

可以看到,通过pathlib.Path.rglob()方法可以直接遍历汇总所有文件的绝对路径,直接用pandas读取即可:

start_time = []
end_time = []
conversion_mean = []
category = []
unit_price_mean = []start = time.time()
# 直接遍历出文件绝对路径
for file_name in p.rglob('*.xlsx'):file = pd.read_excel(file_name)start_time.append(file['日期'].min())end_time.append(file['日期'].max())conversion_mean.append(file['转化率'].mean())category.append(file['三级类目'].unique()[0])unit_price_mean.append(file['客单价'].replace(np.inf, np.nan).dropna().mean())output_file1 = pd.DataFrame({'起始日期': start_time,'终止日期': end_time,'平均转换率': conversion_mean,'所属类目': category,'平均客单价': unit_price_mean})
cost = round(time.time() - start, 2)
print(f'处理数据共用时{cost}秒')

这样,通过pandas的方法我们一下子就处理完了所有数据,只用时2秒,和手动用excel一个个处理相比太方便了,而pathlib库的使用更加方便了我们代码的编写。

 

Pathlib简介:

得到当前目录:

p = Path.cwd()

拼接路径,得到想要的文件的绝对路径:

p_new = p.joinpath('files', 'files32_1', '户外服装&潜水服.xlsx')

得到路径文件:

p_new.name

得到路径文件的名称:

p_new.stem

得到路径文件的后缀:

p_new.suffix

得到路径文件的上一级目录:

p_new.parent

得到路径的每一级:

p_new.parts

判断路径文件是否存在:

p_new.exists()

判断路径文件是否为文件夹:

p_new.is_dir()

判断路径文件是否为文件:

p_new.is_file()

创建新文件夹:

p_dir = Path(Path.cwd().joinpath('created_dir'))
# parents参数:
# True--若p_dir不存在则递归创建文件夹
# False--若p_dir不存在则报错
p_dir.mkdir(exist_ok=True, parents=True)

创建文件夹之前:

创建文件夹之后: 

 

修改路径文件的文件后缀(with_shuffix修改后缀,with_name修改文件名):

# 将原来的xlsx换为txt
p_new.replace(p_new.with_suffix('.txt'))

删除路径文件:

p_new.unlink()

 

 

 


感谢观看!

 

 

 

 

 

这篇关于用Python遍历文件夹下的所有文件并进行数据处理(Pathlib简介)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/532486

相关文章

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中反转字符串的常见方法小结

《Python中反转字符串的常见方法小结》在Python中,字符串对象没有内置的反转方法,然而,在实际开发中,我们经常会遇到需要反转字符串的场景,比如处理回文字符串、文本加密等,因此,掌握如何在Pyt... 目录python中反转字符串的方法技术背景实现步骤1. 使用切片2. 使用 reversed() 函

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Python使用pip工具实现包自动更新的多种方法

《Python使用pip工具实现包自动更新的多种方法》本文深入探讨了使用Python的pip工具实现包自动更新的各种方法和技术,我们将从基础概念开始,逐步介绍手动更新方法、自动化脚本编写、结合CI/C... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v

Python使用python-can实现合并BLF文件

《Python使用python-can实现合并BLF文件》python-can库是Python生态中专注于CAN总线通信与数据处理的强大工具,本文将使用python-can为BLF文件合并提供高效灵活... 目录一、python-can 库:CAN 数据处理的利器二、BLF 文件合并核心代码解析1. 基础合

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

Python中你不知道的gzip高级用法分享

《Python中你不知道的gzip高级用法分享》在当今大数据时代,数据存储和传输成本已成为每个开发者必须考虑的问题,Python内置的gzip模块提供了一种简单高效的解决方案,下面小编就来和大家详细讲... 目录前言:为什么数据压缩如此重要1. gzip 模块基础介绍2. 基本压缩与解压缩操作2.1 压缩文